Properties of Kites 8-5,6 and Trapezoids Warm Up Lesson Presentation

Slides:



Advertisements
Similar presentations
Review Sections 6.1,6.2,6.4,6.6 Section 6.1
Advertisements

Parallelograms Quadrilaterals are four-sided polygons
6-5 Conditions for Special Parallelograms Warm Up Lesson Presentation
Warm up: Can you conclude that the parallelogram is a rhombus, a rectangle, or a square? Explain. For what value of x is parallelogram ABCD a rectangle?
Conditions for special parallelograms
Chapter 5 Pre-AP Geometry
The Distance Formula Used to find the distance between two points: A( x1, y1) and B(x2, y2) You also could just plot the points and use the Pythagorean.
Chapter 6: Polygons and Parallelograms SECTION 6: PROPERTIES OF KITES AND TRAPEZOIDS Megan FrantzOkemos High SchoolMath Instructor.
Lesson 6-1. Warm-up Solve the following triangles using the Pythagorean Theorem a 2 + b 2 = c √3.
Properties of Kites 6-6 and Trapezoids Warm Up Lesson Presentation
The Quadrilateral Family Tree Friday, 1/7/ TRAPEZOID 1. Four-sided polygon Q UADRILATERAL 1. Opposite sides are congruent 2. Opposite angles are.
Final Exam Review Chapter 8 - Quadrilaterals Geometry Ms. Rinaldi.
Chapter Properties of kites and trapezoids.
6-5 Trapezoids and Kites Warm Up Lesson Presentation Lesson Quiz
WARM UP—find your new seat * TAKE OUT your homework ** Review for a quiz—5 min silent.
A QUADRALATERAL WITH BOTH PAIRS OF OPPOSITE SIDES PARALLEL
When you are given a parallelogram with certain properties, you can use the theorems below to determine whether the parallelogram is a rectangle.
Holt Geometry 6-5 Conditions for Special Parallelograms Warm Up 1. Find AB for A (–3, 5) and B (1, 2). 2. Find the slope of JK for J(–4, 4) and K(3, –3).
PROPERTIES AND ATTRIBUTES OF POLYGONS
18/02/2014 CH.6.6 Properties of Kites and Trapezoids
Geometry SECTION 6: QUADRILATERALS. Properties of Parallelograms.
Entry Task.
Example 1: Lucy is framing a kite with wooden dowels. She uses two dowels that measure 18 cm, one dowel that measures 30 cm, and two dowels that measure.
Holt Geometry 6-6 Properties of Kites and Trapezoids Warm Up Solve for x. 1. x = 3x 2 – x = Find FE.
6-6 Trapezoids and Kites I can use properties of kites to solve problems. I can use properties of trapezoids to solve problems. Success Criteria:  Identify.
Use Properties of Trapezoids and Kites Lesson 8.5.
Chapter Conditions for special parallelograms.
A kite is a quadrilateral with exactly two pairs of congruent consecutive sides.
6-5 Conditions for Special Parallelograms Warm Up Lesson Presentation
Section 6-5 Conditions for Special Parallelograms
Conditions for Special Parallelograms Entry Task List the 6 ways to prove a quadrilateral is a parallelogram, show a picture of each.
Special Parallelograms. Warm Up 1.What is the sum of the interior angles of 11-gon. 2.Given Parallelogram ABCD, what is the value of y? 3.Explain why.
Objectives Use properties of kites to solve problems.
Do Now: List all you know about the following parallelograms.
Warm Up(On Separate Sheet & Pass Back Papers)
6-5 Conditions for Special Parallelograms Warm Up Lesson Presentation
6-5 Conditions for Special Parallelograms Warm Up Lesson Presentation
19/02/2014 CH.7.3 Factoring x2 + bx + c.
18/02/2014 CH.6.5 Conditions for Special Parallelogram
20/02/2014 CH.7.2 Factoring by GCF.
Warm Up Solve for x. 1. x = 3x2 – 12 x = Find FE. 5 or –5 43
20/19/02/2014 CH.7.1 Factors and Greatest Common Factors
Properties of Kites 6-6 and Trapezoids Warm Up Lesson Presentation
Pearson Unit 1 Topic 6: Polygons and Quadrilaterals 6-6: Trapezoids and Kites Pearson Texas Geometry ©2016 Holt Geometry Texas ©2007.
Conditions for Special Parallelograms
6.6 Properties of Kites and Trapezoids
6-5: Conditions of Special Parallelograms
Vocabulary trapezoid base of a trapezoid leg of a trapezoid
Objective Prove that a given quadrilateral is a rectangle, rhombus, or square.
6-5 Conditions for Special Parallelograms Warm Up Lesson Presentation
Geometry 6.5 Trapezoids and Kites.
Properties and conditions
Properties of Special Parallelograms
Vocabulary trapezoid base of a trapezoid leg of a trapezoid
6-4 Properties of Special Parallelograms Warm Up Lesson Presentation
Properties of Kites 6-6 and Trapezoids Warm Up Lesson Presentation
Understand, use and prove properties of and relationships among special quadrilaterals: parallelogram, rectangle, rhombus, square, trapezoid, and kite.
6-4 Properties of Special Parallelograms Warm Up Lesson Presentation
6-5 Conditions for Special Parallelograms Warm Up Lesson Presentation
Conditions for Special Parallelograms
6-6 Special Quadrilaterals Warm Up Lesson Presentation Lesson Quiz
6-5 Conditions for Special Parallelograms Warm Up Lesson Presentation
6-5 Conditions for Special Parallelograms Warm Up Lesson Presentation
6-5 Conditions for Special Parallelograms Warm Up Lesson Presentation
Quadrilateral Rectangle Rhombi and Square Part II
6-4 Properties of Special Parallelograms Warm Up Lesson Presentation
6-5 Conditions for Special Parallelograms Warm Up Lesson Presentation
6-5 Conditions for Special Parallelograms Warm Up Lesson Presentation
Unit 6 – Polygons and Quadrilaterals Conditions for Special Quads
Warm Up 5 –1 1. Find AB for A (–3, 5) and B (1, 2).
Presentation transcript:

Properties of Kites 8-5,6 and Trapezoids Warm Up Lesson Presentation Lesson Quiz Holt Geometry

Objectives Use properties of kites to solve problems. Use properties of trapezoids to solve problems.

Vocabulary kite trapezoid base of a trapezoid leg of a trapezoid base angle of a trapezoid isosceles trapezoid midsegment of a trapezoid

A kite is a quadrilateral with exactly two pairs of congruent consecutive sides.

Example 2A: Using Properties of Kites In kite ABCD, mDAB = 54°, and mCDF = 52°. Find mBCD. Kite  cons. sides  ∆BCD is isos. 2  sides isos. ∆ CBF  CDF isos. ∆ base s  mCBF = mCDF Def. of   s mBCD + mCBF + mCDF = 180° Polygon  Sum Thm.

Example 2A Continued mBCD + mCBF + mCDF = 180° Substitute mCDF for mCBF. mBCD + mCBF + mCDF = 180° Substitute 52 for mCBF. mBCD + 52° + 52° = 180° Subtract 104 from both sides. mBCD = 76°

Example 2B: Using Properties of Kites In kite ABCD, mDAB = 54°, and mCDF = 52°. Find mABC. ADC  ABC Kite  one pair opp. s  mADC = mABC Def. of  s Polygon  Sum Thm. mABC + mBCD + mADC + mDAB = 360° Substitute mABC for mADC. mABC + mBCD + mABC + mDAB = 360°

Example 2B Continued mABC + mBCD + mABC + mDAB = 360° mABC + 76° + mABC + 54° = 360° Substitute. 2mABC = 230° Simplify. mABC = 115° Solve.

Example 2C: Using Properties of Kites In kite ABCD, mDAB = 54°, and mCDF = 52°. Find mFDA. CDA  ABC Kite  one pair opp. s  mCDA = mABC Def. of  s mCDF + mFDA = mABC  Add. Post. 52° + mFDA = 115° Substitute. mFDA = 63° Solve.

A trapezoid is a quadrilateral with exactly one pair of parallel sides A trapezoid is a quadrilateral with exactly one pair of parallel sides. Each of the parallel sides is called a base. The nonparallel sides are called legs. Base angles of a trapezoid are two consecutive angles whose common side is a base.

If the legs of a trapezoid are congruent, the trapezoid is an isosceles trapezoid. The following theorems state the properties of an isosceles trapezoid.

Example 3A: Using Properties of Isosceles Trapezoids Find mA. mC + mB = 180° Same-Side Int. s Thm. 100 + mB = 180 Substitute 100 for mC. mB = 80° Subtract 100 from both sides. A  B Isos. trap. s base  mA = mB Def. of  s mA = 80° Substitute 80 for mB

Example 3B: Using Properties of Isosceles Trapezoids KB = 21.9m and MF = 32.7. Find FB. Isos.  trap. s base  KJ = FM Def. of  segs. KJ = 32.7 Substitute 32.7 for FM. KB + BJ = KJ Seg. Add. Post. 21.9 + BJ = 32.7 Substitute 21.9 for KB and 32.7 for KJ. BJ = 10.8 Subtract 21.9 from both sides.

Example 3B Continued Same line. KFJ  MJF Isos. trap.  s base  Isos. trap.  legs  ∆FKJ  ∆JMF SAS CPCTC BKF  BMJ FBK  JBM Vert. s 

Example 3B Continued Isos. trap.  legs  ∆FBK  ∆JBM AAS CPCTC FB = JB Def. of  segs. FB = 10.8 Substitute 10.8 for JB.

Check It Out! Example 3a Find mF. mF + mE = 180° Same-Side Int. s Thm. E  H Isos. trap. s base  mE = mH Def. of  s mF + 49° = 180° Substitute 49 for mE. mF = 131° Simplify.

The midsegment of a trapezoid is the segment whose endpoints are the midpoints of the legs. In Lesson 5-1, you studied the Triangle Midsegment Theorem. The Trapezoid Midsegment Theorem is similar to it.

Review: Triangle Midsegment Theorem If a segment joins the midpoints of two sides of a triangle, then the segment is parallel to the third side, and is half of its length. Midsegment x 2x

Example 5: Finding Lengths Using Midsegments Find EF. Trap. Midsegment Thm. Substitute the given values. EF = 10.75 Solve.

Substitute the given values. Check It Out! Example 5 Find EH. Trap. Midsegment Thm. 1 16.5 = (25 + EH) 2 Substitute the given values. Simplify. 33 = 25 + EH Multiply both sides by 2. 8 = EH Subtract 25 from both sides.

8-6 Identify Special Quadrilaterals Warm Up Lesson Presentation Lesson Quiz Holt Geometry

Objective Prove that a given quadrilateral is a rectangle, rhombus, or square.

When you are given a parallelogram with certain properties, you can use the theorems below to determine whether the parallelogram is a rectangle.

Example 1: Carpentry Application A manufacturer builds a mold for a desktop so that , , and mABC = 90°. Why must ABCD be a rectangle? Both pairs of opposites sides of ABCD are congruent, so ABCD is a . Since mABC = 90°, one angle ABCD is a right angle. ABCD is a rectangle by Theorem 6-5-1.

Below are some conditions you can use to determine whether a parallelogram is a rhombus.

In order to apply Theorems 6-5-1 through 6-5-5, the quadrilateral must be a parallelogram. Caution To prove that a given quadrilateral is a square, it is sufficient to show that the figure is both a rectangle and a rhombus. You will explain why this is true in Exercise 43.

Example 2B: Applying Conditions for Special Parallelograms Determine if the conclusion is valid. If not, tell what additional information is needed to make it valid. Given: Conclusion: EFGH is a square. Step 1 Determine if EFGH is a parallelogram. Given Quad. with diags. bisecting each other  EFGH is a parallelogram.

Example 2B Continued Step 2 Determine if EFGH is a rectangle. Given. EFGH is a rectangle. with diags.   rect. Step 3 Determine if EFGH is a rhombus. with one pair of cons. sides   rhombus EFGH is a rhombus.

Example 2B Continued Step 4 Determine is EFGH is a square. Since EFGH is a rectangle and a rhombus, it has four right angles and four congruent sides. So EFGH is a square by definition. The conclusion is valid.

Check It Out! Example 2 Determine if the conclusion is valid. If not, tell what additional information is needed to make it valid. Given: ABC is a right angle. Conclusion: ABCD is a rectangle. The conclusion is not valid. By Theorem 6-5-1, if one angle of a parallelogram is a right angle, then the parallelogram is a rectangle. To apply this theorem, you need to know that ABCD is a parallelogram .

Lesson Quiz: Part I 1. Given that AB = BC = CD = DA, what additional information is needed to conclude that ABCD is a square?

Lesson Quiz: Part II 2. Determine if the conclusion is valid. If not, tell what additional information is needed to make it valid. Given: PQRS and PQNM are parallelograms. Conclusion: MNRS is a rhombus. valid