Shortest Paths 1 Chapter 7 Shortest Paths C B A E D F 0 328 58 4 8 71 25 2 39.

Slides:



Advertisements
Similar presentations
© 2004 Goodrich, Tamassia Minimum Spanning Trees1 JFK BOS MIA ORD LAX DFW SFO BWI PVD
Advertisements

© 2004 Goodrich, Tamassia Minimum Spanning Trees1 JFK BOS MIA ORD LAX DFW SFO BWI PVD
1 Minimum Spanning Tree Prim-Jarnik algorithm Kruskal algorithm.
Spring 2007Shortest Paths1 Minimum Spanning Trees JFK BOS MIA ORD LAX DFW SFO BWI PVD
1 prepared from lecture material © 2004 Goodrich & Tamassia COMMONWEALTH OF AUSTRALIA Copyright Regulations 1969 WARNING This material.
Shortest Paths1 C B A E D F
CSC 213 Lecture 23: Shortest Path Algorithms. Weighted Graphs Each edge in weighted graph has numerical weight Weights can be distances, building costs,
1 Graphs ORD DFW SFO LAX Many slides taken from Goodrich, Tamassia 2004.
Minimum Spanning Trees1 JFK BOS MIA ORD LAX DFW SFO BWI PVD
© 2004 Goodrich, Tamassia Shortest Paths1 Shortest Paths (§ 13.6) Given a weighted graph and two vertices u and v, we want to find a path of minimum total.
© 2004 Goodrich, Tamassia Minimum Spanning Trees1 Minimum Spanning Trees (§ 13.7) Spanning subgraph Subgraph of a graph G containing all the vertices of.
Minimum Spanning Trees1 JFK BOS MIA ORD LAX DFW SFO BWI PVD
CSC311: Data Structures 1 Chapter 13: Graphs II Objectives: Graph ADT: Operations Graph Implementation: Data structures Graph Traversals: DFS and BFS Directed.
Shortest Paths1 C B A E D F
© 2004 Goodrich, Tamassia Shortest Paths1 C B A E D F
1 prepared from lecture material © 2004 Goodrich & Tamassia COMMONWEALTH OF AUSTRALIA Copyright Regulations 1969 WARNING This material.
CSC 213 Lecture 24: Minimum Spanning Trees. Announcements Final exam is: Thurs. 5/11 from 8:30-10:30AM in Old Main 205.
Lecture20: Graph IV Bohyung Han CSE, POSTECH CSED233: Data Structures (2014F)
Graphs – Shortest Path (Weighted Graph) ORD DFW SFO LAX
Weighted Graphs In a weighted graph, each edge has an associated numerical value, called the weight of the edge Edge weights may represent, distances,
Minimum Spanning Trees
© 2010 Goodrich, Tamassia Shortest Paths1 C B A E D F
1 Shortest Path Problem Topic 11 ITS033 – Programming & Algorithms C B A E D F Asst. Prof. Dr. Bunyarit Uyyanonvara IT Program,
1 Minimum Spanning Tree Problem Topic 10 ITS033 – Programming & Algorithms Asst. Prof. Dr. Bunyarit Uyyanonvara IT Program, Image and Vision Computing.
Shortest Paths C B A E D F
Graphs Part 2. Shortest Paths C B A E D F
Graphs. Data Structure for Graphs. Graph Traversals. Directed Graphs. Shortest Paths. 2 CPSC 3200 University of Tennessee at Chattanooga – Summer 2013.
Minimum-Cost Spanning Tree CS 110: Data Structures and Algorithms First Semester,
Lecture 16. Shortest Path Algorithms
CSC 213 – Large Scale Programming. Today’s Goals  Discuss what is meant by weighted graphs  Where weights placed within Graph  How to use Graph ’s.
© 2010 Goodrich, Tamassia Minimum Spanning Trees1 JFK BOS MIA ORD LAX DFW SFO BWI PVD
CSC 213 – Large Scale Programming. Minimum Spanning Tree (MST)  Spanning subgraph  Subgraph w/ all vertices ORD PIT ATL STL DEN DFW DCA
1 Prim’s algorithm. 2 Minimum Spanning Tree Given a weighted undirected graph G, find a tree T that spans all the vertices of G and minimizes the sum.
1 Weighted Graphs CSC401 – Analysis of Algorithms Lecture Notes 16 Weighted Graphs Objectives: Introduce weighted graphs Present shortest path problems,
Data Structures and Algorithms1 Data Structures and algorithms (IS ZC361) Weighted Graphs – Shortest path algorithms – MST S.P.Vimal BITS-Pilani
Graphs Quebec Toronto Montreal Ottawa 449 km 255 km 200 km 545 km Winnipeg 2075 km 2048 km New York 596 km 790 km 709 km.
CHAPTER 13 GRAPH ALGORITHMS ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN C++, GOODRICH, TAMASSIA.
© 2010 Goodrich, Tamassia Shortest Paths1 C B A E D F
© 2010 Goodrich, Tamassia Minimum Spanning Trees1 JFK BOS MIA ORD LAX DFW SFO BWI PVD
1 COMP9024: Data Structures and Algorithms Week Twelve: Graphs (II) Hui Wu Session 1, 2014
Graphs 10/24/2017 6:47 AM Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and.
Shortest Paths C B A E D F Shortest Paths
Graphs Part 2.
14 Graph Algorithms Hongfei Yan June 8, 2016.
COMP9024: Data Structures and Algorithms
Minimum Spanning Trees
Shortest Paths C B A E D F Shortest Paths
Minimum Spanning Trees
Minimum Spanning Trees
Shortest Path 6/18/2018 4:22 PM Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia,
Shortest Paths C B A E D F Shortest Paths 1
Minimum Spanning Trees
Shortest Paths C B A E D F Shortest Paths
Chapter 14 Graph Algorithms
Minimum Spanning Tree 11/3/ :04 AM Minimum Spanning Tree
Shortest Paths C B A E D F Shortest Paths
Shortest Paths C B A E D F
Minimum Spanning Trees
Shortest Paths C B A E D F Shortest Paths
Shortest Paths C B A E D F Shortest Paths
Minimum Spanning Trees
Chapter 13 Graph Algorithms
Minimum Spanning Tree Section 7.3: Examples {1,2,3,4}
Graphs Part 2.
Graph Algorithms shortest paths, minimum spanning trees, etc.
Minimum Spanning Trees
Copyright © Aiman Hanna All rights reserved
Shortest Paths.
Minimum Spanning Trees
Weighted Graphs C B A E D F Sequences
Presentation transcript:

Shortest Paths 1 Chapter 7 Shortest Paths C B A E D F

Weighted Graphs Shortest Paths 2 In a weighted graph, each edge has an associated numerical value, called the weight of the edge Edge weights may represent, distances, costs, etc. Example: In a flight route graph, the weight of an edge represents the distance in miles between the endpoint airports ORD PVD MIA DFW SFO LAX LGA HNL

Shortest Path Problem Shortest Paths 3 Given a weighted graph and two vertices u and v, we want to find a path of minimum total weight between u and v. Length of a path is the sum of the weights of its edges. Example: Shortest path between Providence and Honolulu Applications Internet packet routing Flight reservations Driving directions ORD PVD MIA DFW SFO LAX LGA HNL

Shortest Path Properties Shortest Paths 4 Property 1: A subpath of a shortest path is itself a shortest path Property 2: There is a tree of shortest paths from a start vertex to all the other vertices Example: Tree of shortest paths from Providence ORD PVD MIA DFW SFO LAX LGA HNL

Single Source Shortest path Dijkstra’s Algorithm Shortest Paths 5 The distance of a vertex v from a vertex s is the length of a shortest path between s and v Dijkstra’s algorithm computes the distances of all the vertices from a given start vertex s Assumptions: the graph is connected the edges are undirected the edge weights are nonnegative We grow a “cloud” of vertices, beginning with s and eventually covering all the vertices The cloud consists of those nodes whose distance from source is known. We store with each vertex v a label d(v) representing the distance of v from s At each step We add to the cloud the vertex u outside the cloud with the smallest distance label, d(u) We update the labels of the vertices adjacent to u

Edge Relaxation -improvement Shortest Paths 6 Metaphor for relaxation is a spring which is stretched and then relaxes to its true length Cloud is nodes that have best distance known Consider an edge e  (u,z) such that u is the vertex most recently added to the cloud z is not in the cloud The relaxation of edge e updates distance d(z) as follows: d(z)  min{d(z),d(u)  weight(e)} d(z)  75 d(u)  z s u d(z)  60 d(u)  z s u e e

Example Shortest Paths 7 CB A E D F  C B A E D F C B A E D F C B A E D F

Example (cont.) Shortest Paths 8 CB A E D F CB A E D F

Dijkstra’s Algorithm Shortest Paths 9 A priority queue stores the vertices outside the cloud Key: distance Element: vertex Locator-based methods insert(k,e) returns a locator replaceKey(l,k) changes the key of an item We store two labels with each vertex: Distance (d(v) label) locator in priority queue Algorithm DijkstraDistances(G, s) Q  new heap-based priority queue for all v  G.vertices() if v  s setDistance(v, 0) else setDistance(v,  ) l  Q.insert(getDistance(v), v) setLocator(v,l) while  Q.isEmpty() u  Q.removeMin() for all e  G.incidentEdges(u) { relax edge e } z  G.opposite(u,e) r  getDistance(u)  weight(e) if r  getDistance(z) setDistance(z,r) Q.replaceKey(getLocator(z),r)

Analysis Shortest Paths 10 Graph operations Method incidentEdges is called once for each vertex Label operations We set/get the distance and locator labels of vertex z O(deg(z)) times Setting/getting a label takes O(1) time Priority queue operations Each vertex is inserted once into and removed once from the priority queue, where each insertion or removal takes O(log n) time The key of a vertex in the priority queue is modified at most deg(w) times, where each key change takes O(log n) time Dijkstra’s algorithm runs in O((n  m) log n) time provided the graph is represented by the adjacency list structure Recall that  v deg(v)  2m The running time can also be expressed as O(m log n) since the graph is connected

Why Dijkstra’s Algorithm Works Shortest Paths 11 Dijkstra’s algorithm is based on the greedy method. It adds vertices by increasing distance. CB A E D F Suppose it didn’t find all shortest distances. Let F be the first wrong vertex the algorithm processed. When the previous node, D, on the true shortest path was considered, its distance was correct. But the edge (D,F) was relaxed at that time! Thus, so long as d(F)>d(D), F’s distance cannot be wrong. That is, there is no wrong vertex.

Why It Doesn’t Work for Negative- Weight Edges Shortest Paths 12 If a node with a negative incident edge were to be added late to the cloud, it could mess up distances for vertices already in the cloud. CB A E D F Dijkstra’s algorithm is based on the greedy method. It adds vertices by increasing distance. C’s true distance is 1, but it is already in the cloud with d(C)=5!

Bellman-Ford Algorithm Single Source shortest Path Shortest Paths 13 Works even with negative-weight edges Must assume directed edges (for otherwise we would have negative- weight cycles) Iteration i finds all shortest paths that use i edges. Running time: O(nm). Can be extended to detect a negative-weight cycle if it exists How? Algorithm BellmanFord(G, s) for all v  G.vertices() if v  s setDistance(v, 0) else setDistance(v,  ) for i  1 to n-1 do // paths of length n for each e  G.edges() //consider all edges { relax edge e } u  G.origin(e) z  G.opposite(u,e) r  getDistance(u)  weight(e) if r  getDistance(z) setDistance(z,r) If no more updates, distances are correct Otherwise, there is a negative weight cycle

Bellman-Ford Example Shortest Paths 14  -2  0     0    Nodes are labeled with their d(v) values 

Bellman-Ford Example Shortest Paths Nodes are labeled with their d(v) values Next iteration of arcs

DAG-based Algorithm Single Source shortest path Shortest Paths 16 Works even with negative- weight edges Uses topological order Doesn’t use any fancy data structures Is much faster than Dijkstra’s algorithm Running time: O(n+m). Algorithm DagDistances(G, s) for all v  G.vertices() if v  s setDistance(v, 0) else setDistance(v,  ) Perform a topological sort of the vertices for u  1 to n do //in topological order for each e  G.outEdges(u) //consider only the successors of u z  G.opposite(u,e) r  getDistance(u)  weight(e) if r  getDistance(z) setDistance(z,r)

DAG Example Shortest Paths 17  -2  0     0    Nodes are labeled with their d(v) values   (two steps)

All-Pairs Shortest Paths Shortest Paths 18 Find the distance between every pair of vertices in a weighted directed graph G. We can make n calls to Dijkstra’s algorithm (if no negative edges), which takes O(nmlog n) time. Likewise, n calls to Bellman- Ford would take O(n 2 m) time. We can achieve O(n 3 ) time using dynamic programming (similar to the Floyd-Warshall algorithm). Algorithm AllPair(G) {assumes vertices 1,…,n} for all vertex pairs (i,j) if i  j D 0 [i,i]  0 else if (i,j) is an edge in G D 0 [i,j]  weight of edge (i,j) else D 0 [i,j]  +  for k  1 to n do for i  1 to n do for j  1 to n do D k [i,j]  min{D k-1 [i,j], D k-1 [i,k]+D k-1 [k,j]} return D n k j i Uses only vertices numbered 1,…,k-1 Uses only vertices numbered 1,…,k-1 Uses only vertices numbered 1,…,k (compute weight of this edge)

Shortest Paths 19 Skip section 7.2.2

Minimum Spanning Trees 20 Minimum Spanning Tree Spanning subgraph Subgraph of a graph G containing all the vertices of G Spanning tree Spanning subgraph that is itself a (free) tree Minimum spanning tree (MST) Spanning tree of a weighted graph with minimum total edge weight Applications Communications networks Transportation networks ORD PIT ATL STL DEN DFW DCA

Minimum Spanning Trees 21 Cycle Property Cycle Property: If an edge is not in the spanning tree, but forms a cycle with T, every edge in that cycle is no greater than e in weight. Let T be a minimum spanning tree of a weighted graph G Let e be an edge of G that is not in T and C let be the cycle formed by e with T For every edge f of C, weight(f)  weight(e) Proof: By contradiction If weight(f)  weight(e) we can get a spanning tree of smaller weight by replacing e with f e C f C e f Replacing f with e yields a better spanning tree

Minimum Spanning Trees 22 UV Partition Property Partition Property: Consider a partition of the vertices of G into subsets U and V Let e be an edge of minimum weight across the partition There is a minimum spanning tree of G containing edge e Proof: Let T be an MST of G If T does not contain e, consider the cycle C formed by e with T and let f be an edge of C across the partition By the cycle property, weight(f)  weight(e) Thus, weight(f)  weight(e) We obtain another MST by replacing f with e e f e f Replacing f with e yields another MST UV

Minimum Spanning Trees 23 Prim-Jarnik’s Algorithm Similar to Dijkstra’s algorithm (for a connected graph) –Only difference is that we put edge weight (not shortest distance from source) on priority queue We pick an arbitrary vertex s and we grow the MST as a cloud of vertices, starting from s We store with each vertex v a label d(v) = the smallest weight of an edge connecting v to a vertex in the cloud At each step: We add to the cloud the vertex u outside the cloud with the smallest edge We update the labels of the vertices adjacent to u

Minimum Spanning Trees 24 Prim-Jarnik’s Algorithm (cont.) A priority queue stores the vertices outside the cloud Key: distance Element: vertex Locator-based methods insert(k,e) returns a locator replaceKey(l,k) changes the key of an item We store three labels with each vertex: Distance Parent edge in MST Locator in priority queue Algorithm PrimJarnikMST(G) Q  new heap-based priority queue s  a vertex of G for all v  G.vertices() if v  s setDistance(v, 0) else setDistance(v,  ) setParent(v,  ) l  Q.insert(getDistance(v), v) setLocator(v,l) while  Q.isEmpty() u  Q.removeMin() edge to u is part of spanning tree for all e  G.incidentEdges(u) z  G.opposite(u,e) r  weight(e) if r  getDistance(z) setDistance(z,r) setParent(z,e) Q.replaceKey(getLocator(z),r)

Minimum Spanning Trees 25 Example B D C A F E   B D C A F E  7 B D C A F E  7 B D C A F E

Minimum Spanning Trees 26 Example (contd.) B D C A F E B D C A F E

Minimum Spanning Trees 27 Analysis Graph operations Method incidentEdges is called once for each vertex Label operations We set/get the distance, parent and locator labels of vertex z O(deg(z)) times Setting/getting a label takes O(1) time Priority queue operations Each vertex is inserted once into and removed once from the priority queue, where each insertion or removal takes O(log n) time The key of a vertex w in the priority queue is modified at most deg(w) times, where each key change takes O(log n) time Prim-Jarnik’s algorithm runs in O((n  m) log n) time provided the graph is represented by the adjacency list structure Recall that  v deg(v)  2m The running time is O(m log n) since the graph is connected

Minimum Spanning Trees 28 Kruskal’s Algorithm We are left with one cluster that encompasses the MST A tree T which is our MST Algorithm KruskalMST(G) for each vertex V in G do define a Cluster(v) of  {v} Sort edges by weight T   while T has fewer than n-1 edges do edge e = next edge in list Let u, v be the endpoints of e if Cluster(v)  Cluster(u) then Add edge e to T Merge Cluster( (v) and Cluster( (u) return T

Minimum Spanning Trees 29 Data Structure for Kruskal Algortihm The algorithm maintains a forest of trees An edge is accepted it if connects distinct trees We need a data structure that maintains a partition, i.e., a collection of disjoint sets, with the operations: -find(u): return the set storing u -union(u,v): replace the sets storing u and v with their union

Minimum Spanning Trees 30 Representation of a Partition Each partition is stored as a tree with members pointing to their parent. Each element has a reference back to the set operation find(u) takes O(d) time, (where d is the level of u in the tree) and returns the set of which u is a member. in operation union(u,v), we do a find on each of u and v and point either u to v or v to u. the time for operation union(u,v) is max(n u,n v ), where n u and n v are the depths of the partitions storing u and v Whenever an element is processed, if we keep track of sizes of partitions or depth of tree, it goes into a set of size at least double, hence each element is processed at most log n times This is even better with path compression – almost linear

Minimum Spanning Trees 31 Kruskal Example JFK BOS MIA ORD LAX DFW SFO BWI PVD

Minimum Spanning Trees 32 Example

Minimum Spanning Trees 33 Example

Minimum Spanning Trees 34 Example

Minimum Spanning Trees 35 Example

Minimum Spanning Trees 36 Example

Minimum Spanning Trees 37 Example

Minimum Spanning Trees 38 Baruvka’s Algorithm Like Kruskal’s Algorithm, Baruvka’s algorithm grows many “clouds” at once. Each iteration of the while-loop halves the number of connected components in T. In ONE traversal, we add multiple edges. The running time is O(m log n). Can be done in parallel. Algorithm BaruvkaMST(G) T  V {just the vertices of G} while T has fewer than n-1 edges do for each connected component C in T do Let edge e be the smallest-weight edge from C to another component in T. if e is not already in T then Add edge e to T return T

Minimum Spanning Trees 39 Baruvka’s Algorithm For all vertices search the edge with the smallest weight of this vertex and mark these edges. Repeat until n-1 edges have been added: Add these edges to the MST. Do a DFS search (using only edges of MST) to find clusters. Label all nodes reached with the cluster number. Keep track of the smallest edge you encounter (in each cluster) which is not part of the selected edges.

Minimum Spanning Trees 40 Baruvka Example

Minimum Spanning Trees 41 Example

Minimum Spanning Trees 42 Example

Minimum Spanning Trees 43 What is complexity? Each pass does a dfs search – O(m+n) = O(m) since is connected Make a total of log n passes – as the number of components decreases by at least half each pass O(m)log n