Introduction1-1 Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  circuit switching,

Slides:



Advertisements
Similar presentations
Data Communications and Computer Networks Chapter 1 CS 3830 Lecture 5 Omar Meqdadi Department of Computer Science and Software Engineering University of.
Advertisements

James 1:5 If any of you lacks wisdom, he should ask God, who gives generously to all without finding fault, and it will be given to him.
CS 381 Introduction to computer networks Chapter 1 - Lecture 3 2/5/2015.
Introduction 1-1 Chapter 1 Introduction These additional slides are adapted from the slides of the textbook. Computer Networking: A Top Down Approach,5th.
Introduction1-1 CSE4213 Computer Networks II Chapter 1 Introduction Course page:
Introduction1-1 Chapter 1: Introduction Our goal:  get context, overview, “feel” of networking  more depth, detail later in course  approach: m descriptive.
Lecture 2 Introduction 1-1 Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  circuit.
Networking Based on the powerpoint presentation of Computer Networking: A Top Down Approach Featuring the Internet, Third Edition, J.F. Kurose and K.W.
Introduction1-1 Chapter 1: Introduction  get context, overview, “feel” of networking  more depth, detail later in course  approach: m descriptive m.
EEC-484/584 Computer Networks Lecture 3 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
1: Introduction1 Protocol “Layers” Networks are complex! r many “pieces”: m hosts m routers m links of various media m applications m protocols m hardware,
Lecture 3 Introduction 1-1 Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  circuit.
1-1 Foundation Objectives: 1.1 What’s the Internet? 1.2 Network edge 1.3 Network core 1.4 Network access and physical media 1.5 Internet structure and.
Lecture Internet Overview: roadmap 1.1 What is the Internet? (A simple overview last week) Today, A closer look at the Internet structure! 1.2 Network.
1-1 Internet Overview: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  circuit switching, packet.
Lecture Internet Overview: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  circuit switching,
Lecture Internet Overview: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  circuit switching,
Introduction1-1 Data Communication and Networks Lecture 2 Overview (Part 2) September 16, 2004 Joseph Conron Computer Science Department New York University.
Introduction 1-1 Chapter 1 Introduction slides are modified from J. Kurose & K. Ross CPE 400 / 600 Computer Communication Networks.
What’s the Internet: “nuts and bolts” view
Introduction 1 Lecture 3 Networking Concepts slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science & Engineering Department.
Introduction 1-1 Lecture 3 Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 CS3516: These slides.
Graciela Perera Department of Computer Science and Information Systems Slide 1 of 5 OVERVIEW FOR NETWORKING CONCEPTS AND ADMINISTRATION CSIS 3723 Graciela.
Introduction 1-1 Chapter 1 Introduction Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.
Last quiz question….
Introduction 1-1 Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  circuit switching,
Slides originally from Professor Williamson at U Calgary1-1 Introduction Part II  Network Core  Delay & Loss in Packet-switched Networks  Structure.
CS 381 Introduction to computer networks Chapter 1 - Lecture 4 2/10/2015.
Introduction 1-1 Chapter 1 Part 2 Network Core These slides derived from Computer Networking: A Top Down Approach, 6 th edition. Jim Kurose, Keith Ross.
How do loss and delay occur?
Introduction 1-1 Chapter 1 Introduction Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.
Introduction 1-1 “Real” Internet delays and routes  What do “real” Internet delay & loss look like?  Traceroute program: provides delay measurement from.
CS 3830 Day 5 Introduction 1-1. Announcements  Program 1 due today at 3pm  Program 2 posted by tonight (due next Friday at 3pm)  Quiz 1 at the end.
Chapter 1 Introduction Circuit/Packet Switching Protocols Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley,
Introduction Chapter 1: roadmap 1.1 what is the Internet? 1.2 network edge  end systems, access networks, links 1.3 network core  packet switching, circuit.
RSC Part I: Introduction Redes y Servicios de Comunicaciones Universidad Carlos III de Madrid These slides are, mainly, part of the companion slides to.
Lecture 5: Internetworking: A closer View By Dr. Najla Al-Nabhan Introduction 1-1.
Introduction1-1 Chapter 1 Computer Networks and the Internet Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose,
Computer Networks CS1652 The slides are adapted from the publisher’s material All material copyright J.F Kurose and K.W. Ross, All Rights Reserved.
Computer Networks Performance Metrics
TCP/IP Network.
CS 3830 Day 6 Introduction 1-1. Announcements  Program 2 posted this afternoon (due date will be week of 9/24) Introduction 1-2.
1 Computer Networks & The Internet Lecture 4 Imran Ahmed University of Management & Technology.
Introduction 1-1 Chapter 1 Introduction Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April The.
1: Introduction1 Introduction 3. 1: Introduction2 Delay in packet-switched networks packets experience delay on end-to-end path r four sources of delay.
Introduction 1-1 Chapter 1 Part 3 Delay, loss and throughput These slides derived from Computer Networking: A Top Down Approach, 6 th edition. Jim Kurose,
CS 3830 Day 4 Introduction 1-1. Announcements  No office hour 12pm-1pm today only  Quiz on Friday  Program 1 due on Friday (put in DropBox on S drive)
Introduction 1-1 Chapter 1 Introduction (2/2) CSEE 4119 Computer Networks.
Introduction1-1 What’s the Internet: “nuts and bolts” view  millions of connected computing devices: hosts = end systems  run network apps Home network.
COMP 562: “Advanced Topics in Networking” Qian Zhang Spring 2009 HKUST Introduction 1-1.
Introduction 1-1 Chapter 1 Introduction Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on.
DELAYS, LAYERED NETWORK MODEL AND NETWORK SECURITY.
Introduction 1-1 Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  circuit switching,
EEC-484/584 Computer Networks
1: Introduction1 Protocol “Layers” Networks are complex! r many “pieces”: m hosts m routers m links of various media m applications m protocols m hardware,
Introduction 1-1 Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  circuit switching,
Introduction1-1 Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  circuit switching,
Computer Networks Performance Metrics Computer Networks Spring 2013.
Introduction 1-1 1DT057 Distributed Information Systems Chapter 1 Introduction.
A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their original slides that accompany the.
CSEN 404 Introduction to Networks Amr El Mougy Lamia AlBadrawy.
Introduction1-1 Data Communications and Computer Networks Chapter 1 CS 3830 Lecture 3 Omar Meqdadi Department of Computer Science and Software Engineering.
What’s the Internet: “nuts and bolts” view
A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their original slides that accompany the.
Introduction to Networks
Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge
Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge
Presentation transcript:

Introduction1-1 Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  circuit switching, packet switching, network structure 1.4 Delay, loss and throughput in packet-switched networks 1.5 Protocol layers, service models 1.6 Networks under attack: security 1.7 History

Introduction1-2 The Network Core  mesh of interconnected routers  the fundamental question: how is data transferred through net?  circuit switching: dedicated circuit per call: telephone net  packet-switching: data sent thru net in discrete “chunks”

Introduction1-3 Network Core: Circuit Switching End-end resources reserved for “call”  link bandwidth, switch capacity  dedicated resources: no sharing  circuit-like (guaranteed) performance  call setup required

Introduction1-4 Network Core: Circuit Switching network resources (e.g., bandwidth) divided into “pieces”  pieces allocated to calls  resource piece idle if not used by owning call (no sharing)  dividing link bandwidth into “pieces”  frequency division  time division

Introduction1-5 Circuit Switching: FDM and TDM FDM frequency time TDM (GSM uses this) frequency time 4 users Example: TDMA: Time Division Multiplexing Access

Introduction1-6 Numerical example  How long does it take to send a file of 640,000 bits from host A to host B over a circuit-switched network?  All links are Mbps  Each link uses TDM with 24 slots/sec  500 msec to establish end-to-end circuit Let’s work it out!

Introduction1-7 Network Core: Packet Switching each end-end data stream divided into packets  user A, B packets share network resources  each packet uses full link bandwidth  resources used as needed Bandwidth division into “pieces” Dedicated allocation Resource reservation A B C D

Introduction1-8 resource contention:  aggregate resource demand can exceed amount available  congestion: packets queue, wait for link use  store and forward: packets move one hop at a time  Node receives complete packet before forwarding Network Core: Packet Switching A B C D

Introduction1-9 Packet Switching: Statistical Multiplexing Sequence of A & B packets does not have fixed pattern, shared on demand  statistical multiplexing. TDM: each host gets same slot in revolving TDM frame. A B C 10 Mb/s Ethernet 1.5 Mb/s D E statistical multiplexing queue of packets waiting for output link

Introduction1-10 Packet switching versus circuit switching  1 Mb/s link  each user:  100 kb/s when “active”  active 10% of time  circuit-switching:  10 users  packet switching:  with 35 users, prob. of > 10 active less than.0004 Packet switching allows more users to use network! N users 1 Mbps link Q: how did we know ?

Introduction1-11 Packet switching versus circuit switching  Great for bursty data  resource sharing  simpler, no call setup  Excessive congestion: packet delay and loss  protocols needed for reliable data transfer, congestion control  Q: How to provide circuit-like behavior?  bandwidth guarantees needed for audio/video apps  QoS – Quality of Service  still an unsolved problem (chapter 7) Is packet switching a “slam dunk winner?”

Introduction1-12 Packet-switching: store-and-forward  Takes L/R seconds to transmit (push out) packet of L bits on to link with R bps  Entire packet must arrive at router before it can be transmitted on next link: store and forward  delay = 3L/R (assuming zero propagation delay) Example:  L = 7.5 Kbits  R = 1.5 Mbps  delay = 15 ms R R R L more on delay shortly …

Introduction1-13 Packet-switched networks: forwarding  Goal: move packets from source to destination  datagram network:  destination address in packet determines next hop  routes may change during session  analogy: driving, asking directions  virtual circuit network:  each packet carries tag (virtual circuit ID), tag determines next hop  fixed path determined at call setup time, remains fixed thru call  Pro: routers can do resource reservation  Con: routers maintain per-call state (complex, not scale)

Introduction1-14 Network Taxonomy Telecommunication networks Circuit-switched networks FDM TDM Packet-switched networks Networks with VCs Datagram Networks Internet is a datagram network packet-switched network Internet provides both connection-oriented (TCP) and connectionless services (UDP) to application.

Introduction1-15 Internet structure: network of networks  roughly hierarchical  at center: “tier-1” ISPs (e.g., MCI, Sprint, AT&T, Cable and Wireless), national/international coverage  treat each other as equals Tier 1 ISP Tier-1 providers interconnect (peer) privately NAP Tier-1 providers also interconnect at public Network Access Points (NAPs)

Introduction1-16 Tier-1 ISP: e.g., Sprint … to/from customers peering to/from backbone ….…. … … … POP: point-of-presence

Introduction1-17 Internet structure: network of networks  “Tier-2” ISPs: smaller (often regional) ISPs  Connect to one or more tier-1 ISPs, possibly other tier-2 ISPs Tier 1 ISP NAP Tier-2 ISP Tier-2 ISP pays tier-1 ISP for connectivity to rest of Internet  tier-2 ISP is customer of tier-1 provider Tier-2 ISPs also peer privately with each other, interconnect at NAP

Introduction1-18 Internet structure: network of networks  “Tier-3” ISPs and local ISPs  last hop (“access”) network (closest to end systems) Tier 1 ISP NAP Tier-2 ISP local ISP local ISP local ISP local ISP local ISP Tier 3 ISP local ISP local ISP local ISP Local and tier- 3 ISPs are customers of higher tier ISPs connecting them to rest of Internet

Introduction1-19 Internet structure: network of networks  a packet passes through many networks! Tier 1 ISP NAP Tier-2 ISP local ISP local ISP local ISP local ISP local ISP Tier 3 ISP local ISP local ISP local ISP

Introduction1-20 Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  circuit switching, packet switching, network structure 1.4 Delay, loss and throughput in packet-switched networks 1.5 Protocol layers, service models 1.6 Networks under attack: security 1.7 History

Introduction1-21 How do loss and delay occur? packets queue in router buffers  packet arrival rate to link exceeds output link capacity  packets queue, wait for turn A B packet being transmitted (delay) packets queueing (delay) free (available) buffers: arriving packets dropped (loss) if no free buffers

Introduction1-22 Four sources of packet delay  1. nodal processing:  check bit errors  determine output link A B propagation transmission nodal processing queueing  2. queueing  time waiting at output link for transmission  depends on congestion level of router

Introduction1-23 Delay in packet-switched networks 3. Transmission delay:  R=link bandwidth (bps)  L=packet length (bits)  time to send bits into link = L/R 4. Propagation delay:  d = length of physical link  s = propagation speed in medium (~2-3x10 8 m/sec)  propagation delay = d/s A B propagation transmission nodal processing queueing Note: s and R are very different quantities!

Introduction1-24 Nodal delay  d proc = processing delay  typically a few microsecs or less  d queue = queuing delay  depends on congestion  d trans = transmission delay  = L/R, significant for low-speed links  d prop = propagation delay  a few microsecs to hundreds of msecs

Introduction1-25 Queueing delay (revisited)  R=link bandwidth (bps)  L=packet length (bits)  a=average packet arrival rate traffic intensity = La/R  La/R ~ 0: average queueing delay small  La/R -> 1: delays become large  La/R > 1: more “work” arriving than can be serviced, average delay infinite!

Introduction1-26 “Real” Internet delays and routes  What do “real” Internet delay & loss look like?  Traceroute program: provides delay measurement from source to router along end-end Internet path towards destination. For all i:  sends three packets that will reach router i on path towards destination  router i will return packets to sender  sender times interval between transmission and reply. 3 probes

Introduction1-27 “Real” Internet delays and routes 1 cs-gw ( ) 1 ms 1 ms 2 ms 2 border1-rt-fa5-1-0.gw.umass.edu ( ) 1 ms 1 ms 2 ms 3 cht-vbns.gw.umass.edu ( ) 6 ms 5 ms 5 ms 4 jn1-at wor.vbns.net ( ) 16 ms 11 ms 13 ms 5 jn1-so wae.vbns.net ( ) 21 ms 18 ms 18 ms 6 abilene-vbns.abilene.ucaid.edu ( ) 22 ms 18 ms 22 ms 7 nycm-wash.abilene.ucaid.edu ( ) 22 ms 22 ms 22 ms ( ) 104 ms 109 ms 106 ms 9 de2-1.de1.de.geant.net ( ) 109 ms 102 ms 104 ms 10 de.fr1.fr.geant.net ( ) 113 ms 121 ms 114 ms 11 renater-gw.fr1.fr.geant.net ( ) 112 ms 114 ms 112 ms 12 nio-n2.cssi.renater.fr ( ) 111 ms 114 ms 116 ms 13 nice.cssi.renater.fr ( ) 123 ms 125 ms 124 ms 14 r3t2-nice.cssi.renater.fr ( ) 126 ms 126 ms 124 ms 15 eurecom-valbonne.r3t2.ft.net ( ) 135 ms 128 ms 133 ms ( ) 126 ms 128 ms 126 ms 17 * * * 18 * * * 19 fantasia.eurecom.fr ( ) 132 ms 128 ms 136 ms traceroute: gaia.cs.umass.edu to Three delay measurements from gaia.cs.umass.edu to cs-gw.cs.umass.edu * means no response (probe lost, router not replying) trans-oceanic link Under Windows is “tracert”

Introduction1-28 Packet loss  queue (aka buffer) preceding link in buffer has finite capacity  when packet arrives to full queue, packet is dropped (aka lost)  lost packet may be retransmitted by previous node, by source end system, or not retransmitted at all (UDP) A B packet being transmitted packet arriving to full buffer is lost buffer (waiting area)

Introduction1-29 Throughput  throughput: rate (bits/time unit) at which bits transferred between sender/receiver  instantaneous: rate at given point in time  average: rate over long(er) period of time server, with file of F bits to send to client link capacity R s bits/sec link capacity R c bits/sec pipe that can carry fluid at rate R s bits/sec) pipe that can carry fluid at rate R c bits/sec) server sends bits (fluid) into pipe

Introduction1-30 Throughput (more)  R s < R c What is average end-end throughput? R s bits/sec R c bits/sec  R s > R c What is average end-end throughput? R s bits/sec R c bits/sec link on end-end path that constrains end-end throughput bottleneck link

Introduction1-31 Throughput: Internet scenario 10 connections (fairly) share backbone bottleneck link R bits/sec RsRs RsRs RsRs RcRc RcRc RcRc R  per-connection end-end throughput: min(R c,R s,R/10)  in practice: R c or R s is often bottleneck

Introduction1-32 Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  circuit switching, packet switching, network structure 1.4 Delay, loss and throughput in packet-switched networks 1.5 Protocol layers, service models 1.6 Networks under attack: security 1.7 History

Introduction1-33 Protocol “Layers” Networks are complex!  many “pieces”:  hosts  routers  links of various media  applications  protocols  hardware, software Question: Is there any hope of organizing structure of network? Or at least our discussion of networks?

Introduction1-34 Organization of air travel  a series of steps ticket (purchase) baggage (check) gates (load) runway takeoff airplane routing ticket (complain) baggage (claim) gates (unload) runway landing airplane routing

Introduction1-35 ticket (purchase) baggage (check) gates (load) runway (takeoff) airplane routing departure airport arrival airport intermediate air-traffic control centers airplane routing ticket (complain) baggage (claim gates (unload) runway (land) airplane routing ticket baggage gate takeoff/landing airplane routing Layering of airline functionality Layers: each layer implements a service  via its own internal-layer actions  relying on services provided by layer below

Introduction1-36 Why layering? Dealing with complex systems:  explicit structure allows identification, relationship of complex system’s pieces  layered reference model for discussion  modularization eases maintenance, updating of system  change of implementation of layer’s service transparent to rest of system  e.g., change in gate procedure doesn’t affect rest of system  layering considered harmful?  Duplicate functions

Introduction1-37 Internet protocol stack  application: supporting network applications  FTP, SMTP, STTP  transport: host-host data transfer  TCP, UDP  network: routing of datagrams from source to destination  IP, routing protocols  link: data transfer between neighboring network elements  PPP, Ethernet  physical: bits “on the wire” application transport network link physical

Introduction1-38 ISO/OSI reference model  presentation: allow applications to interpret meaning of data, e.g., encryption, compression, machine- specific conventions  session: synchronization, checkpointing, recovery of data exchange  Internet stack “missing” these layers!  these services, if needed, must be implemented in application  needed? application presentation session transport network link physical

Introduction1-39 message segment datagram frame source application transport network link physical HtHt HnHn HlHl M HtHt HnHn M HtHt M M destination application transport network link physical HtHt HnHn HlHl M HtHt HnHn M HtHt M M network link physical link physical HtHt HnHn HlHl M HtHt HnHn M HtHt HnHn HlHl M HtHt HnHn M HtHt HnHn HlHl M HtHt HnHn HlHl M router switch Encapsulation

Introduction1-40 Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  circuit switching, packet switching, network structure 1.4 Delay, loss and throughput in packet-switched networks 1.5 Protocol layers, service models 1.6 Networks under attack: security 1.7 History

Introduction1-41 Network Security  attacks on Internet infrastructure:  infecting/attacking hosts: malware, spyware, worms, unauthorized access (data stealing, user accounts)  denial of service: deny access to resources (servers, link bandwidth)  Internet not originally designed with (much) security in mind  original vision: “a group of mutually trusting users attached to a transparent network”  Internet protocol designers playing “catch-up”  Security considerations in all layers!

Introduction1-42 What can bad guys do: malware?  Spyware:  infection by downloading web page with spyware  records keystrokes, web sites visited, upload info to collection site  Virus  infection by receiving object (e.g., attachment), actively executing  self-replicating: propagate itself to other hosts, users  Worm:  infection by passively receiving object that gets itself executed  self- replicating: propagates to other hosts, users Sapphire Worm: aggregate scans/sec in first 5 minutes of outbreak (CAIDA, UWisc data)

Introduction1-43 Denial of service attacks  attackers make resources (server, bandwidth) unavailable to legitimate traffic by overwhelming resource with bogus traffic 1. select target 2. break into hosts around the network (see malware) 3. send packets toward target from compromised hosts target

Introduction1-44 Sniff, modify, delete your packets Packet sniffing:  broadcast media (shared Ethernet, wireless)  promiscuous network interface reads/records all packets (e.g., including passwords!) passing by A B C src:B dest:A payload  Ethereal software used for end-of-chapter labs is a (free) packet-sniffer  more on modification, deletion later

Introduction1-45 Masquerade as you  IP spoofing: send packet with false source address A B C src:B dest:A payload

Introduction1-46 Masquerade as you  IP spoofing: send packet with false source address  record-and-playback : sniff sensitive info (e.g., password), and use later  password holder is that user from system point of view A B C src:B dest:A user: B; password: foo

Introduction1-47 Masquerade as you  IP spoofing: send packet with false source address  record-and-playback : sniff sensitive info (e.g., password), and use later  password holder is that user from system point of view A B later ….. C src:B dest:A user: B; password: foo

Introduction1-48 Network Security  more throughout this course  chapter 8: focus on security  crypographic techniques

Introduction1-49 Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  circuit switching, packet switching, network structure 1.4 Delay, loss and throughput in packet-switched networks 1.5 Protocol layers, service models 1.6 Networks under attack: security 1.7 History

Introduction1-50 Internet History  1961: Kleinrock - queueing theory shows effectiveness of packet- switching  1964: Baran - packet- switching in military nets  1967: ARPAnet conceived by Advanced Research Projects Agency  1969: first ARPAnet node operational  1972:  ARPAnet demonstrated publicly  NCP (Network Control Protocol) first host-host protocol  first program  ARPAnet has 15 nodes : Early packet-switching principles

Introduction1-51 Internet History  1970: ALOHAnet satellite network in Hawaii  1974: Cerf and Kahn - architecture for interconnecting networks  1976: Ethernet at Xerox PARC  ate70’s: proprietary architectures: DECnet, SNA, XNA  late 70’s: switching fixed length packets (ATM precursor)  1979: ARPAnet has 200 nodes Cerf and Kahn’s internetworking principles:  minimalism, autonomy - no internal changes required to interconnect networks  best effort service model  stateless routers  decentralized control define today’s Internet architecture : Internetworking, new and proprietary nets

Introduction1-52 Internet History  1983: deployment of TCP/IP  1982: smtp protocol defined  1983: DNS defined for name-to-IP- address translation  1985: ftp protocol defined  1988: TCP congestion control  100,000 hosts connected to confederation of networks : new protocols, a proliferation of networks

Introduction1-53 Internet History 2007:  ~500 million hosts  Voice, Video over IP  P2P applications: BitTorrent (file sharing) Skype (VoIP), PPLive (video)  more applications: YouTube, MySpace, gaming  wireless, mobility

Introduction1-54 Introduction: Summary Covered a lot of material!  Internet overview  what’s a protocol?  network edge, core, access network  packet-switching versus circuit-switching  Internet structure  performance: loss, delay, throughput  layering, service models  security  history You now have:  context, overview, “feel” of networking  more depth, detail to follow!