Chapter 4-2 Continuous Random Variables 主講人 : 虞台文.

Slides:



Advertisements
Similar presentations
Chapter 2 Multivariate Distributions Math 6203 Fall 2009 Instructor: Ayona Chatterjee.
Advertisements

Joint and marginal distribution functions For any two random variables X and Y defined on the same sample space, the joint c.d.f. is For an example, see.
Use of moment generating functions. Definition Let X denote a random variable with probability density function f(x) if continuous (probability mass function.
Probability Theory STAT 312 STAT 312 Dr. Zakeia AlSaiary.
1 Chemical and Engineering Thermodynamics Chapter 2 Conservation of mass and energy Sandler.
布林代數的應用--- 全及項(最小項)和全或項(最大項)展開式
Advanced Chemical Engineering Thermodynamics
Chapter 2 Random Vectors 與他們之間的性質 (Random vectors and their properties)
亂數產生器安全性評估 之統計測試 SEC HW7 姓名:翁玉芬 學號:
Review of Chapter 3 - 已學過的 rules( 回顧 )- 朝陽科技大學 資訊管理系 李麗華 教授.
: OPENING DOORS ? 題組: Problem Set Archive with Online Judge 題號: 10606: OPENING DOORS 解題者:侯沛彣 解題日期: 2006 年 6 月 11 日 題意: - 某間學校有 N 個學生,每個學生都有自己的衣物櫃.
STAT0_sampling Random Sampling  母體: Finite population & Infinity population  由一大小為 N 的有限母體中抽出一樣本數為 n 的樣 本,若每一樣本被抽出的機率是一樣的,這樣本稱 為隨機樣本 (random sample)
5.1 Rn上之長度與點積 5.2 內積空間 5.3 單範正交基底:Gram-Schmidt過程 5.4 數學模型與最小平方分析
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
Monte Carlo Simulation Part.2 Metropolis Algorithm Dept. Phys. Tunghai Univ. Numerical Methods C. T. Shih.
Probability theory 2010 Main topics in the course on probability theory  Multivariate random variables  Conditional distributions  Transforms  Order.
空間域之影像強化 3.1 背景介紹 3.2 基礎灰階值轉換 3.3 以灰階統計圖為基礎之處理 3.4 算術與邏輯運算 3.5 基礎空間域濾波
1 Chemical and Engineering Thermodynamics Chapter 8 Phase equilibrium in mixtures Parts B : Illustration Sandler.
1 第四章 多變數函數的微分學 § 4.1 偏導數定義 定義 極限值 ■. 2 定理 極限值的基本定理 (1) 極限值的唯一性 : 若 存在,則 其值必為唯一。 (2) 若 且 ( 與 為常數 ) , 則 且 為常數且.
Probability theory 2011 Main topics in the course on probability theory  The concept of probability – Repetition of basic skills  Multivariate random.
Monte Carlo Simulation Part.1 Dept. Phys., Tunghai Univ. Numerical Methods, C. T. Shih.
CH 15- 元件可靠度之驗證  驗證方法  指數模式之可靠度驗證  韋式模式之可靠度驗證  對數常態模式之可靠度驗證  失效數為零時之可靠度估算  各種失效模式之應用.
: Problem A : MiniMice ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11411: Problem A : MiniMice 解題者:李重儀 解題日期: 2008 年 9 月 3 日 題意:簡單的說,題目中每一隻老鼠有一個編號.
Samples vs. Distributions Distributions: Discrete Random Variable Distributions: Continuous Random Variable Another Situation: Sample of Data.
7.4 Lookback Options 指導教授:戴天時 報告者:陳博宇. 章節結構 Floating Strike Lookback Black-Scholes-Merton Equation Reduction of Dimension Computation.
第七章 連續機率分配.
Root-Finding Algorithm Bisection method Suppose we want to solve the equation f(x) = 0. Given two points a and b such that f(a) and f(b) have opposite.
Chapter 3 Entropy : An Additional Balance Equation
-Antidifferentiation- Chapter 6 朝陽科技大學 資訊管理系 李麗華 教授.
Chapter 10 m-way 搜尋樹與B-Tree
C7_prob_2 1 Chap 7 機率論 隨機變數 (random variable) :一群數量的 代表,它們的值是由機會決定的,通常以 大寫英文字母表示 隨機變數分為離散型與連續型兩種。 機率分布 (probability distribution) : 描述 隨機變數值的機率變化 離散型變數的分布直接以.
第五章 內積空間 5.1 Rn上之長度與點積 5.2 內積空間 5.3 單範正交基底:Gram-Schmidt過程
Probability Distribution 機率分配 汪群超 12/12. 目的:產生具均等分配的數值 (Data) ,並以 『直方圖』的功能計算出數值在不同範圍內出現 的頻率,及繪製數值的分配圖,以反應出該 機率分配的特性。
A random variable that has the following pmf is said to be a binomial random variable with parameters n, p The Binomial random variable.
計算機概論 第6章 數位邏輯設計.
結構力學總複習 Review of Structural Mechanics
1 Chemical and Engineering Thermodynamics Chapter 8 Phase equilibrium in mixtures Parts B : Illustration Sandler.
Chapter 6 Introduction to Inference 推論簡介. Chapter 6 Introduction to Inference 6.1 Estimating with Confidence 6.2 Tests of Significance 6.3 Making Sense.
連續隨機變數 連續變數:時間、分數、重量、……
11 Ch05 遞迴 淡江大學 周清江 1. 2  遞迴函數乃是一個自己反覆呼叫自己的函數  一個典型的遞迴演算法 n! = n * (n-1)! = n * (n-1) * (n-2)! = n * (n-1) * (n-2) * (n-3)! = … = n * (n-1) * (n-2)
結構學 ( 一 ) 第八次作業 97/05/22. 題目一 題目一 (a) 先決定放鬆哪個束制,成為靜定結構 以支承 C 之水平反力為贅力,則 C 點滾支 承變成自由端,即形成靜定基元結構 C 點滿足變位諧和  Δ CH =0.
CH 14-可靠度工程之數學基礎 探討重點 失效時間之機率分配 指數模式之可靠度工程.
Chapter 12 Estimation 統計估計. Inferential statistics Parametric statistics 母數統計 ( 母體為常態或 大樣本 ) 假設檢定 hypothesis testing  對有關母體參數的假設,利用樣本資料,決定接受或 不接受該假設的方法.
Chapter 21 Random Variables Discrete: Bernoulli, Binomial, Geometric, Poisson Continuous: Uniform, Exponential, Gamma, Normal Expectation & Variance, Joint.
Lecture 28 Dr. MUMTAZ AHMED MTH 161: Introduction To Statistics.
Chapter6 Jointly Distributed Random Variables
◎Series Solutions of ODEs. 微分方程式之級數解 ◎Special Functions 特殊方程式
e 的發現始於微分,當 h 逐漸接近零時,計 算 (1+h) 1/h 之值,其結果無限接近一定值 ,這個定值就是 e ,最早發現此值 的人是瑞士著名數學家歐拉,他以自己姓名 的字頭小寫 e 來命名此無理數。 計算對數函數 y = log a x 的導數,得 dy/dx = (1/x)
Statistical Distributions
Chapter 4-1 Continuous Random Variables 主講人 : 虞台文.
Functions of Random Variables. Methods for determining the distribution of functions of Random Variables 1.Distribution function method 2.Moment generating.
135 Chapter 4 Higher Order Differential Equations Highest differentiation:, n > 1 Most of the methods in Chapter 4 are applied for the linear DE.
Use of moment generating functions 1.Using the moment generating functions of X, Y, Z, …determine the moment generating function of W = h(X, Y, Z, …).
Chapter 2 Combinatorial Analysis 主講人 : 虞台文. Content Unordered Samples without Replacement  Combinations Binomial Coefficients Some Useful Mathematic.
EE 5345 Multiple Random Variables
Chapter 5 Expectations 主講人 : 虞台文. Content Introduction Expectation of a Function of a Random Variable Expectation of Functions of Multiple Random Variables.
Chapter 3-2 Discrete Random Variables 主講人 : 虞台文. Content Functions of a Single Discrete Random Variable Discrete Random Vectors Independent of Random.
Chapter 3 Multivariate Random Variables
Distributions of Functions of Random Variables November 18, 2015
Chapter 4 Multivariate Normal Distribution. 4.1 Random Vector Random Variable Random Vector X X 1, , X p are random variables.
Ch 8 實習.
統計計算與模擬 政治大學統計系余清祥 2004 年 3 月 15~24 日 第五、六週: 隨機變數模擬
Statistics Lecture 19.
Cumulative distribution functions and expected values
Chapter 5 Expectations 主講人:虞台文.
Handout Ch 5.
Chapter 4-1 Continuous Random Variables
Chapter 3-2 Discrete Random Variables
Presentation transcript:

Chapter 4-2 Continuous Random Variables 主講人 : 虞台文

Content Functions of Single Continuous Random Variable Jointly Distributed Random Variables Independence of Random Variables Distribution of Sums Distributions of Multiplications and Quotients Conditional Densities Multivariate Distributions Multidimensional Changes of Variables

Functions of Single Continuous Random Variable Chapter 4-2 Continuous Random Variables

The Problem 已知 =?=?

Example 11 已知 =?=?

Example 11

Example 12

請熟記 ! 標準常態之平方為一個自由度的卡方

Example 13  0 as 0  y <16  0 as 0  y  4

Example 13  0 as 0  z <4  0 as 0  z  2

Example 14 x fX(x)fX(x) 1

x fX(x)fX(x) 1 How to generate exponentially distributed random numbers using a computer?

Example 14 x fX(x)fX(x) 1

Theorem 1 Let g be a differentiable monotone function on an interval I, and let g(I) denote its range. Let X be a continuous r. v. with pdf f X such that f X (x) = 0 for x  I. Then, Y = g(X) has pdf f Y given by g or

Theorem 1 Let g be a differentiable monotone function on an interval I, and let g(I) denote its range. Let X be a continuous r. v. with pdf f X such that f X (x) = 0 for x  I. Then, Y = g(X) has pdf f Y given by g or

X Y = g(X) Theorem 1 Y = g (X) and Case 1: Pf) y g1(y)g1(y) positive

X Y = g(X) Theorem 1 Y = g (X) and Case 2: Pf) y g1(y)g1(y) negative

Example 15 Redo Example 14 using Theorem 1. x fX(x)fX(x) 1 1 Y = g (X) and

Example 16 Y = g (X) and

Example 16 Y = g (X) and

Example 17

 < 1 : DFR  = 1 : CFR  > 1 : IFR

Example 18 Let X be a continuous random variable. Define Y to be the cdf of X, i.e., Y = F X (X). Find f Y (y).

Random Number Generation The method to generate a random number X such that it possesses a particular distribution by a computer: 1. Let Y = F X (X). 2. Find 3. Generate a random variable by a computer in interval (0, 1). Let y be such a random number. 4. Computing, we obtain the desired random number x.

Example 19 How to generate a random variable X by a computer such that X ~ Exp( )? Let Y = F X (X) = 1  e  X. So, Y ~ U(0, 1). Assume U(0, 1) can be generated by a computer. By letting X =   1 ln(1  Y), we then have X ~ Exp( ).

Jointly Distributed Random Variables Chapter 4-2 Continuous Random Variables

Definition  Joint Distribution Functions The joint (cumulative) distribution function (jcdf) of random variables X and Y is defined by: F X,Y (x, y) = P(X  x, Y  y),  < x < ,  < y < . (x, y)

Properties of a jcdf (x 1, y 1 ) (x 2, y 2 )

Properties of a jcdf ab c d (b, d) (b, c) (a, d) (a, c)

Definition  Marginal Distribution Functions Given the jpdf F(x, y) of random variables X, Y. The marginal distribution functions of X and Y are defined respectively by

Definition  Joint Probability Density Functions A joint probability density function (jpdf) of continuous random variable X, Y is a nonnegative function f X,Y (x, y) such that

Properties of a Jpdf fX(u)fX(u) fY(v)fY(v)

fX(u)fX(u) fY(v)fY(v) Marginal Probability Density Functions (see next page) Marginal Probability Density Functions (see next page)

Marginal Probability Density Functions

Example 20

X Y

X Y (x, y)

Example 20 X Y (x, y)

Example 20 X Y (x, y)

Example 20

Example 21

X Y fX(x)fX(x) x y=xy=x

X Y fY(y)fY(y) y x=yx=y

X Y 105 5

Independence of Random Variables Chapter 4-2 Continuous Random Variables

Definition  Independence of Random Variables Two random variables X and Y are said to be independent, denoted as, if

Theorem 2

Example 22 ?

?

? 

Example 23 ?

? 1 1

?

Distribution of Sums Chapter 4-2 Continuous Random Variables

The Problem Given f(x, y) or F(x, y), and Z =  (X, Y), F Z (z) = ? f Z (z) = ?

The Problem Given f(x, y) or F(x, y), and Z =  (X, Y), F Z (z) = ? f Z (z) = ? x y AzAz

The Distribution of Sums Given f(x, y) or F(x, y), and Z =  (X, Y), F Z (z) = ? f Z (z) = ? x y X + Y

The Distribution of Sums x y Z = X + Y

The Distribution of Sums Z = X + Y

The Distribution of Sums Z = X + Y

The Distribution of Sums Z = X + Y I(X), I(Y)  0 and

Example 24 Let X ~ Exp( ), and Y ~ Exp( ) be independent. Let Z = X + Y. Find f Z (z). I ( X ), I ( Y )  0 Fact:

Example 25 Let X ~ U(0, 1) and Y ~ U(0, 1) be two independent variables. Find f X+Y. X ~ U(0, 1), Y ~ U(0, 1) f X+Y = ?

Example 25 X ~ U(0, 1), Y ~ U(0, 1) f X+Y = ? I(X), I(Y)  0 Define 積分區間分析

Example 25 X ~ U(0, 1), Y ~ U(0, 1) f X+Y = ? 積分區間分析 Case 1:Case 2: 0 1 z1z1 z 0 1 z1z1 z I(X), I(Y)  0 Define 0< z  1 1 < z < 2

Example 25 X ~ U(0, 1), Y ~ U(0, 1) f X+Y = ? Case 1:Case 2: I(X), I(Y)  0 Define 0< z  1 1 < z < 2

Example 25 X ~ U(0, 1), Y ~ U(0, 1) f X+Y = ? Case 1:Case 2: I(X), I(Y)  0 Define 0< z  1 1 < z < 2 z fZ(z)fZ(z)

Example 26 x y f(x, y) X ~ U(0, 1), Y ~ U(0, 1)

Example 26 x y f(x, y) X ~ U(0, 1), Y ~ U(0, 1) x y 2x + y = 2

Example 26 x y f(x, y) X ~ U(0, 1), Y ~ U(0, 1) x y x  y =  0.5 x  y = 0.5

Distributions of Multiplications and Quotients Chapter 4-2 Continuous Random Variables

Distributions of Multiplications and and Quotients 已知 I(X), I(Y)  0 and

Example 27 Let X ~  (  1, ) and Y ~  (  2, ) be independent random variables. Find the pdf of Y/X.

Example 27 Chapter 2 Exercise

Example 27

Conditional Densities Chapter 4-2 Continuous Random Variables

Conditional Densities Let X and Y be continuous random variables having jpdf f. The conditional density f Y|X is defined by

Facts

Example 28

Example 29

Multivariate Distributions Chapter 4-2 Continuous Random Variables

Definitions

Properties of Multivariate Distributions

Definition  Independence Random variables X 1, …, X n are called independent if

Example 30

Example 31

Important Theorem of Sums To be proved in the next chapter.

Important Theorem of Sums

熟記 !!! 靈活的將它們用於解題

Multidimensional Changes of Variables Chapter 4-2 Continuous Random Variables

Multidimensional Changes of Variables Let X 1, X 2, …, X n be continuous r.v.’s with jpdf

Multidimensional Changes of Variables Let X 1, X 2, …, X n be continuous r.v.’s with jpdf 假設此函式為一對一 求反函式

Multidimensional Changes of Variables Let X 1, X 2, …, X n be continuous r.v.’s with jpdf 一對一 求反函式 Jacobin Matrix Jacobin Matrix

Example 34

求反函式 Jacobin Matrix Jacobin Matrix

Example 34 求反函式 Jacobin Matrix Jacobin Matrix

Example 34 求反函式 Jacobin Matrix Jacobin Matrix

Example 35

Define ? 求反函式 Jacobin Matrix Jacobin Matrix

Example 35 Define 求反函式 Jacobin Matrix Jacobin Matrix ?

Example 35 Define 求反函式 Jacobin Matrix Jacobin Matrix

Example 35 Define 求反函式 Jacobin Matrix Jacobin Matrix

Example 36 此例非一對一,以上方法非直接可用, 請參考講義。