2.2. The Flare Configuration Flare Ribbons and HXR Sources Overall Course of the Event Hard X-Ray Morphology M R Kundu 1, V V Grechnev 2, S M White 1,

Slides:



Advertisements
Similar presentations
RHESSI Investigations of the Neupert Effect in Solar Flares Brian R. Dennis AAS/SPD Meeting 6 June 2002.
Advertisements

NBYM 2006 A major proton event of 2005 January 20: propagating supershock or superflare? V. Grechnev 1, V. Kurt 2, A. Uralov 1, H.Nakajima 3, A. Altyntsev.
RHESSI observations of LDE flares – extremely long persisting HXR sources Mrozek, T., Kołomański, S., Bąk-Stęślicka, U. Astronomical Institute University.
Thick Target Coronal HXR Sources Astrid M. Veronig Institute of Physics/IGAM, University of Graz, Austria.
Flare energy release and wave dynamics in nearby sunspot Solar and Stellar Flares, Observations, simulations and synergies June , 2013, Prague,
Spatial and temporal relationships between UV continuum and hard x-ray emissions in solar flares Aaron J. Coyner and David Alexander Rice University June.
Microwave and hard X-ray imaging observations of energetic electrons in solar flares: event of 2003 June 17 Kundu, M R., Schmahl, E J, and White, S M.
TRACE and RHESSI observations of the failed eruption of the magnetic flux rope Tomasz Mrozek Astronomical Institute University of Wrocław.
Hard X-ray Production in a Failed Filament Eruption David, Alexander, Rui Liu and Holly R., Gilbert 2006 ApJ 653, L719 Related Paper: Ji. H. et al., 2003.
Relations between concurrent hard X-ray sources in solar flares M. Battaglia and A. O. Benz Presented by Jeongwoo Lee NJIT/CSTR Journal Club 2007 October.
24 Oct 2001 A Cool, Dense Flare T. S. Bastian 1, G. Fleishman 1,2, D. E. Gary 3 1 National Radio Astronomy Observatory 2 Ioffe Institute for Physics and.
+ Hard X-Ray Footpoint Motion and Progressive Hardening in Solar Flares Margot Robinson Mentor: Dr. Angela DesJardins MSU Solar Physics Summer REU, 2010.
X-Ray Observation and Analysis of a M1.7 Class Flare Courtney Peck Advisors: Jiong Qiu and Wenjuan Liu.
9th RHESSI Workshop, Sept. 1-5, 2009, Genova On Broken-up Spectra of RHESSI Flares Y. P. Li & W. Q. Gan Purple Mountain Observatory.
RHESSI/GOES Observations of the Non-flaring Sun from 2002 to J. McTiernan SSL/UCB.
Hard X-ray footpoint statistics: spectral indices, fluxes, and positions Pascal Saint-Hilaire 1, Marina Battaglia 2, Jana Kasparova 3, Astrid Veronig 4,
White-Light Flares: TRACE and RHESSI Observations H. Hudson (UCB), J. Wolfson (LMSAL) & T. Metcalf (CORA)
RHESSI/GOES Xray Analysis using Multitemeprature plus Power law Spectra. J.McTiernan (SSL/UCB)
FLARE ENERGETICS:TRACE WHITE LIGHT AND RHESSI HARD X-RAYS* L. Fletcher (U. Glasgow), J. C. Allred (GSFC), I. G. Hannah (UCB), H. S. Hudson (UCB), T. R.
RHESSI/GOES Xray Analysis using Multitemeprature plus Power law Spectra. J.McTiernan (SSL/UCB) ABSTRACT: We present spectral fits for RHESSI and GOES solar.
RHESSI/GOES Observations of the Non-flaring Sun from 2002 to J. McTiernan SSL/UCB.
Observations of the failed eruption of the magnetic flux rope – a direct application of the quadrupolar model for a solar flare Tomasz Mrozek Astronomical.
Rapid Changes in the Longitudinal Magnetic Field Associated with the July gamma -ray Flare Vasyl Yurchyshyn, Haimin Wang, Valentyna Abramenko,
Nonlinear Force Free Field Models for AR J.McTiernan, H.Hudson (SSL/UCB) T.Metcalf (LMSAL)
The Change of Magnetic Inclination Angles Associated with Flares Yixuan Li April 1,2008.
Center to Limb Variation of Hard X-Ray Spectra from RHESSI J.McTiernan (SSL/UCB) ABSTRACT: We use the RHESSI flare database to measure the center to limb.
Center to Limb Variation of Hard X-Ray Spectra from RHESSI J. McTiernan SSL/UCB.
Late-phase hard X-ray emission from flares The prototype event (right): March 30, 1969 (Frost & Dennis, 1971), a very bright over-the-limb event with a.
Study of magnetic helicity in solar active regions: For a better understanding of solar flares Sung-Hong Park Center for Solar-Terrestrial Research New.
Constraints on Particle Acceleration from Interplanetary Observations R. P. Lin together with L. Wang, S. Krucker at UC Berkeley, G Mason at U. Maryland,
Magnetic Reconnection Rate and Energy Release Rate Jeongwoo Lee 2008 April 1 NJIT/CSTR Seminar Day.
EUV vs. B-field Comparisons Yingna Su Smithsonian Astrophysical Observatory Coauthours: Leon Golub, Aad Van Ballegooijen, Maurice Gros. HMI/AIA Science.
White-Light Flares via TRACE and RHESSI: Death to the thick target? H. Hudson, plus collaboration with J. Allred, I. Hannah, L. Fletcher, T. Metcalf, J.
Spatially Resolved Spectral Analysis of Gradual Hardening Flare Takasaki H., Kiyohara J. (Kyoto Univ.), Asai A., Nakajima H. (NRO), Yokoyama T. (Univ.
Evolution of Flare Ribbons and Energy Release Rate Ayumi Asai 1,2, T. Yokoyama T. 3, M. Shimojo 2, S. Masuda 4, and K. Shibata 1 1:Kwasan and Hida Observatories,
Quick changes of photospheric magnetic field during flare-associated surges Leping Li, Huadong Chen, Suli Ma, Yunchun Jiang National Astronomical Observatory/Yunnan.
Multiwavelength observations of a partially occulted solar flare Laura Bone, John C.Brown, Lyndsay Fletcher.
Observations of quiet solar features with the SSRT and NoRH V.V. Grechnev & SSRT team Institute of Solar-Terrestrial Physics, Irkutsk, Russia Relatively.
Lyndsay Fletcher, University of Glasgow Ramaty High Energy Solar Spectroscopic Imager Fast Particles in Solar Flares The view from RHESSI (and TRACE) MRT.
Probing Energy Release of Solar Flares M. Prijatelj Carnegie Mellon University Advisors: B. Chen, P. Jibben (SAO)
RHESSI and Radio Imaging Observations of Microflares M.R. Kundu, Dept. of Astronomy, University of Maryland, College Park, MD G. Trottet, Observatoire.
1 / 10 Comparison between Microwave and Hard X-ray Spectral Indices of Temporally and Spatially Resolved Non-Thermal Sources Kiyohara, J., Takasaki, H.,
Coronal hard X-ray sources and associated decimetric/metric radio emissions N. Vilmer D. Koutroumpa (Observatoire de Paris- LESIA) S.R Kane G. Hurford.
Simultaneous monitoring observations of solar active regions at millimeter wavelengths at radio telescopes RT-7.5 BMSTU (Russia) and RT-14 Metsahovi radio.
High-Energy Emission from a Solar Flare in Hard X-Rays and Microwaves M R Kundu 1, V V Grechnev 2, S M White 1, E J Schmahl 1, N S Meshalkina 2, L K Kashapova.
1 The Astrophysical Journal, 601:L195–L198, 2004 February RAPID PENUMBRAL DECAY FOLLOWING THREE X-CLASS SOLAR FLARES H. Wang, 1,2 C. Liu, 1 J.
Studies on the 2002 July 23 Flare with RHESSI Ayumi ASAI Solar Seminar, 2003 June 2.
NoRH Observations of Prominence Eruption Masumi Shimojo Nobeyama Solar Radio Observatory NAOJ/NINS 2004/10/28 Nobeyama Symposium SeiSenRyo.
Analysis Magnetic Reconnection in Solar Flares: the Importance of Spines and Separators Angela Des Jardins 1, Richard Canfield 1, Dana Longcope 1, Emily.
Evolution of Flare Ribbons and Energy Release Rate Ayumi ASAI 1, Takaaki YOKOYAMA 2, Masumi SHIMOJO 3, Satoshi MASUDA 4, and Kazunari SHIBATA 1 1:Kwasan.
NoRH Observations of RHESSI Microflares M.R. Kundu, Dept. of Astronomy, University of Maryland, College Park, MD E.J.Schmahl, Dept. of Astronomy, University.
SH 51A-02 Evolution of the coronal magnetic structures traced by X-ray and radio emitting electrons during the large flare of 3 November 2003 N.Vilmer,
H α and hard X-ray observations of solar white-light flares M. D. Ding Department of Astronomy, Nanjing University.
Joint session WG4/5 Points for discussion: - Soft-hard-soft spectral behaviour – again - Non-thermal pre-impulsive coronal sources - Very dense coronal.
Today’s Papers 1. Flare-Related Magnetic Anomaly with a Sign Reversal Jiong Qiu and Dale E. Gary, 2003, ApJ, 599, Impulsive and Gradual Nonthermal.
Flare Ribbon Expansion and Energy Release Ayumi ASAI Kwasan and Hida Observatories, Kyoto University Explosive Phenomena in Magnetized Plasma – New Development.
Some EOVSA Science Issues Gregory Fleishman 26 April 2011.
Microwave emission from the trapped and precipitated electrons in solar bursts J. E. R. Costa and A. C. Rosal1 2005, A&A, 436, 347.
Scientific Interests in OVSA Expanded Array Haimin Wang.
OBSERVATION OF MICROWAVE OSCILLATIONS WITH SPATIAL RESOLUTION V.E. Reznikova 1, V.F. Melnikov 1, K. Shibasaki 2, V.M. Nakariakov 3 1 Radiophysical Research.
2. Data3. Results full disk image (H  ) of the flare (Sartorius Telescope) NOAA Abstract Preflare Nonthermal Emission Observed in Microwave and.
Observations of the Thermal and Dynamic Evolution of a Solar Microflare J. W. Brosius (Catholic U. at NASA’s GSFC) G. D. Holman (NASA/GSFC)
Evolution of Flare Ribbons and Energy Release Ayumi ASAI 1, Takaaki YOKOYAMA 2, Masumi SHIMOJO 3, Satoshi MASUDA 4, Hiroki KUROKAWA 1, and Kazunari SHIBATA.
Coronal hard X-ray sources and associated radio emissions N. Vilmer D. Koutroumpa (Observatoire de Paris- LESIA; Thessaloniki University) S.R Kane G. Hurford.
Physics of Solar Flares
Two Years of NoRH and RHESSI Observations: What Have We Learned
Magnetic Topology of the 29 October 2003 X10 Flare
Flare Ribbon Expansion and Energy Release
Nonthermal Electrons in an Ejecta Associated with a Solar Flare
Periodic Acceleration of Electrons in Solar Flares
Presentation transcript:

2.2. The Flare Configuration Flare Ribbons and HXR Sources Overall Course of the Event Hard X-Ray Morphology M R Kundu 1, V V Grechnev 2, S M White 1, E J Schmahl 1, N S Meshalkina 2, L K Kashapova 2 1 University of Maryland, 2 Institute of Solar-Terrestrial Physics, Irkutsk High-Energy Emission from a Solar Flare in Hard X-Rays and Microwaves Abstract. We investigate accelerated electron energy spectra for different sources in a large flare which occurred on June 17, 2003 using simultaneous observations obtained with two instruments, the Nobeyama Radio Heliograph (NoRH) at 17 and 34 GHz, and the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) at hard Xrays. This flare is one of the few in which emission up to energies exceeding 200 keV can be imaged in HXR. Furthermore, we can investigate the spectra of individual sources up to this energy. We discuss and compare the HXR and microwave spectra and morphology. Although the event overall appears to correspond to the standard scenario with magnetic reconnection under an eruptive filament, several of its features do not seem to be consistent with popular flare models. In particular we find that (1) microwave emissions might be optically thick at high frequencies despite a low peak frequency in the total flux radio spectrum, presumably due to the inhomogeneity of the emitting source; (2) magnetic fields in high- frequency radio sources might be stronger than sometimes assumed; (3) sources spread over a very large volume can show matching evolution in their HXR spectra that may provide a challenge to acceleration models. Our results emphasize the importance of studies of sunspot-associated flares and total flux measurements of radio bursts in the millimeter range. Discussion. The underestimation of the magnetic field strength results in an underestimate of the microwave peak frequency; indeed one sees a low peak frequency of the NoRP total flux spectrum. We have shown that this low peak frequency is due to the contribution of emission from the upper blob associated with the whole loop. Thus, the apparent consistency of the low peak frequency with weak magnetic field is in this case deceptive. Consequently, radio frequencies which do not correspond to the optically thin regime can be misinterpreted as belonging to the optically thin regime. There is no reason to use problematic 80 GHz records in this case, and the microwave spectrum estimated from the 35 to 17 GHz ratio inevitably becomes flatter than the optically thin one. The discrepancy with the HXR spectrum then appears naturally. Believing that the 17 GHz emission belongs to the optically thin regime, one gets a strange behavior of the polarization. With the underestimated magnetic field, one gets a significant deficiency of the flux density, and is constrained to search for a way to increase it. The Razin effect seems to become important at higher frequencies than in reality. It was most likely negligible in our event Fig. 2. Flare ribbons, HXR sources, and sunspots. Ribbons were observed by TRACE during peak 3 (a, b, e) and late in the decay phase (c, f) in the 1600 Å images (a, c) and WL ones (b, e, f). Panel (b) shows a WL difference image with contours of the sunspot umbrae and penumbrae. The lower row also shows HXR RHESSI images at peak 3 (d, e; 50–100 keV) and peak 4 (f; 100–200 keV). Levels of dashed contours in panels (e, f) are 40% and 80% of the maximum. White contours in panel (e) and black ones in panel (f) correspond to the closest 1600 Å images, white contours in panel (f) reproduce the ribbons shown in panels (a, e). “N1”, “S1”, and “S2” denote major sunspots related to the flare site according to their polarities, and “SR” denotes the southern region of the flare. Axes show hereafter solar disk center according to the pointing of RHESSI and MDI. Fig. 3. Coronal images of the event from the onset up to its late decay: (a): activation of filaments, (b, c): their rise and eruption, (d, e): peaks 3 and 4, (f): late decay. Grayscale background shows TRACE 195 Å images in panels (a – e) and a BBSO H  image in panel (f). Contours show RHESSI images. Labels “N1”, “S2”, “SR” denote flare regions. Filaments visible in TRACE images are labeled “F1 – F3” in panel (a) and “EF” in panels (b, c) showing their eruption. A late- stage H  image (f) shows a post-flare loop between N1 and S2. Estimations and Modeling. Approach: Microwave brightness temperature: T b ( ) = T eff ( )[1-e -  ( ) ]  ( ) =  ( )L, T eff ( ) and  ( ) according to Dulk & Marsh (1982) Magnetic field and areas of sources assumed to depend on frequency (Bastian, Benz, Gary, 1998) Three-component source: two footpoints and loop-associated blob above them T  ( ) = T eff fp ( )[1-e -  fp ( ) ]e -  blob ( ) + T eff blob ( )[1-e -  blob ( ) ] Fig. 5. Flare morphology observed during peaks 2a–4 and shoulder (consecutive rows). Upper row: overlays of 17 GHz (green) and 34 GHz (blue) contour maps on a TRACE WL image observed at 23:22. Middle row: 17 GHz Stokes V maps (white; solid positive, broken negative) and Stokes I maps (green) on an MDI magnetogram observed at 22:23 (bright N, dark S). Lower row: RHESSI 50–100 keV (red) and 34 GHz contour maps on the same TRACE WL image as in the left column. Summary. Our multi-spectral analysis of the 2003 June 17 event has shown that its main features were probably related to the location of main flare sources above sunspots. This may determine strong microwave flare emissions and probably was somehow related to hard electron spectra observed in the event. Properties of flare emissions imply a single acceleration mechanism, which was most likely the same for all energy domains up to 800 keV. Some features of microwave emissions appear to be indicative of trapping issues, consistent with existing concepts. We have not found a significant discrepancy between the spectra of electrons responsible for microwaves and hard X-rays frequently reported in previous studies (with the limitation that the microwave index is very uncertain). Instead, we note that sometimes this discrepancy could be due to underestimation of the microwave turnover frequency resulting from inhomogeneity in the microwave/millimeter source. So we emphasize that the microwave peak frequency measured from total flux records does not guarantee that higher frequencies are all optically thin. It rather shows the lower limit of possible turnover frequencies of gyrosynchrotron spectra of footpoint-associated sources. This is also related to probable underestimations of the magnetic field strength. This conclusion appears to be consistent with the results of White et al. (2003) which implied an optically thick regime even at 35 GHz, although their event was significantly different. These issues highlight the importance of total flux measurements of radio bursts in the millimeter range. Our results also emphasize the importance of both experimental and theoretical analyses of sunspot-associated flares, which might be related to extreme solar events, but do not appear to be sufficiently studied. Fig GHz images (top row) and spectral indices (bottom row, derived after convolving the 34 GHz images to the 17 GHz resolution) both overlaid by contours of 17 GHz images. Contour levels in each image are at 0.9 of its maximum divided by powers of 3. Scale bars on the right quantify the grayscale and color representations. The maximum brightness temperatures over each image are specified in the upper row for 17 GHz and in the lower row for 34 GHz. Fig. 1. RHESSI hard X-ray (top) and NoRP microwave (bottom) total flux time profiles. The 300–800 keV band is magnified by a factor of 5. Prominent peaks as well as a later shoulder are denoted for convenience. RHESSI background levels are shifted to show the bursts better. Radio light curves are shown for Stokes I, and for Stokes V at 35 GHz only (dashed; magnified by a factor of 6). Fig. 4. Hard X-ray images at each of the three main peaks in the HXR light curve (contours). The images result from summing over the keV range. The background image in each panel is the image for peak 2 so that changes in morphology from one peak to the next can be seen. Contours are at 4, 8, 16, 32, 48, 64, & 80% of the peak in each image. The resolution of the images is 9 . The middle panel shows the regions used for the HXR spectra of sources S2, N1, and SR as dotted boxes. Fig. 7. Hard X-ray spectra at each of the three main peaks in the light curve for each of the three sources in the HXR images. These are derived from image cubes made in 20 keV channels from 40 to 300 keV. Observations The M6.8 flare of June 17, 2003 (S08E58) NoRP total flux monitoring NoRH 17 & 34 GHz imaging RHESSI keV images and spectra TRACE 195 Å and SOHO/MDI images HXR & Microwave Light Curves Emissions > 300 keV is observed in very few flares In this flare, strongest emissions at kev during peak 4 Hardening of microwave emissions after peak 4 Power-law fits to the photon spectral index of individual sources in each of the three main peaks in the 2003 June 17 light curve derived from images in different energy bins, together with the fit to background-subtracted 50 – 400 keV spectra from the RHESSI front detectors. For the spatially integrated spectra, the numbers are the results of a broken power-law fit: the spectral index at energies below the break, the break energy (keV) in parentheses, and the spectral index above the break. Uncertainties in the fits to the break energies are typically large (tens of keV). Fig. 8 Microwave Spectra. Shadings show the uncertainties of the flux density at 80 GHz. The spectral indices  NoRP specified in panels a–d were calculated from the flux ratios at 17 and 35 GHz (upper row) as well as from the flux ratios at 35 and 80 GHz at the lower and upper boundaries of the shaded regions, respectively. The thick dotted lines show the highest-frequency slope corresponding to the RHESSI HXR spectrum in the energy range 100–300 keV produced by MeV electrons. Fig. 9 Modeling Emissions during Peak 4. (a) The observed NoRP spectrum (gray) and the spectra of two identical footpoint sources modeled using the approach of Dulk and Marsh (black solid) and the Ramaty code (dash-dotted). (b) The flux density spectra of the two footpoint sources (dotted and dashed lines) and the looptop part (dash-dotted line), and the total spectrum (thick line). (c) The spectrum of the brightness temperatures for the footpoint sources. Asterisks in panels (a) and (b) show the NoRP measurements, and the vertical dash- dotted lines mark the turnover frequencies. Section…