Triatomic states in ultracold gases Marcelo Takeshi Yamashita Universidade Estadual Paulista - Brazil  Lauro Tomio – IFT / Unesp  Tobias Frederico –

Slides:



Advertisements
Similar presentations
Trapped ultracold atoms: Bosons Bose-Einstein condensation of a dilute bosonic gas Probe of superfluidity: vortices.
Advertisements

Marcelo Takeshi Yamashita Instituto de Física Teórica – IFT / UNESP.
Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute Zero Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute.
The University of Tokyo
Study of universal few-body states in 7 Li - open answers to open questions, or everything I have learned on physics of ultracold lithium atoms. (A technical.
Ultracold Alkali Metal Atoms and Dimers: A Quantum Paradise Paul S. Julienne Atomic Physics Division, NIST Joint Quantum Institute, NIST/U. Md 62 nd International.
Universal Thermodynamics of a Unitary Fermi gas Takashi Mukaiyama University of Electro-Communications.
Two- and three-body resonances in the system N.V. Shevchenko Nuclear Physics Institute, Ř e ž, Czech Republic.
1 Ground and excited states for exotic three-body atomic systems Lorenzo Ugo ANCARANI Laboratoire de Physique Moléculaire et des Collisions Université.
Making cold molecules from cold atoms
The Efimov Effect in Ultracold Gases Weakly Bounds Systems in Atomic and Nuclear Physics March , 2010 Institut für Experimentalphysik, Universität.
The noise spectra of mesoscopic structures Eitan Rothstein With Amnon Aharony and Ora Entin Condensed matter seminar, BGU.
Numerical Studies of Universality in Few-Boson Systems Javier von Stecher Department of Physics and JILA University of Colorado Probable configurations.
Coupled-Channel analyses of three-body and four-body breakup reactions Takuma Matsumoto (RIKEN Nishina Center) T. Egami 1, K. Ogata 1, Y. Iseri 2, M. Yahiro.
Observation of universality in 7 Li three-body recombination across a Feshbach resonance Lev Khaykovich Physics Department, Bar Ilan University,
Semi-Classical Methods and N-Body Recombination Seth Rittenhouse ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA Efimov States.
Universality in ultra-cold fermionic atom gases. with S. Diehl, H.Gies, J.Pawlowski S. Diehl, H.Gies, J.Pawlowski.
Free Quarks versus Hadronic Matter Xiao-Ming Xu. picture below the critical temperature T c.
What can we learn about quantum gases from 2- and 3-atom problems? Fei Zhou University of British Columbia, Vancouver at Institute for Nuclear Theory,
The noise spectra of mesoscopic structures Eitan Rothstein With Amnon Aharony and Ora Entin University of Latvia, Riga, Latvia.
Stability of a Fermi Gas with Three Spin States The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites Yi Zhang John Huckans.
Lecture II Non dissipative traps Evaporative cooling Bose-Einstein condensation.
ULTRACOLD COLLISIONS IN THE PRESENCE OF TRAPPING POTENTIALS ZBIGNIEW IDZIASZEK Institute for Quantum Information, University of Ulm, 18 February 2008 Institute.
Dynamics of Quantum- Degenerate Gases at Finite Temperature Brian Jackson Inauguration meeting and Lev Pitaevskii’s Birthday: Trento, March University.
Theory of interacting Bose and Fermi gases in traps
Systémes à petit nombre de corps (Few-body systems) IPHC Strasbourg, France Rimantas Lazauskas, IPHC Strasbourg, France.
System and definitions In harmonic trap (ideal): er.
Ultracold Fermi gases University of Trento BEC Meeting, Trento, 2-3 May 2006 INFM-CNR Sandro Stringari.
Indranil Mazumdar Dept. of Nuclear & Atomic Physics, Tata Institute of Fundamental Research, Mumbai Bose Institute, Kolkata 26 th August, 2011.
Few-body Physics in a Many-body World
Theory of Intersubband Antipolaritons Mauro F
ATOM-ION COLLISIONS ZBIGNIEW IDZIASZEK Institute for Quantum Information, University of Ulm, 20 February 2008 Institute for Theoretical Physics, University.
Cold Atomic and Molecular Collisions 1. Basics 2. Feshbach resonances 3. Photoassociation Paul S. Julienne Quantum Processes and Metrology Group Atomic.
VARIATIONAL APPROACH FOR THE TWO-DIMENSIONAL TRAPPED BOSE GAS L. Pricoupenko Trento, June 2003 LABORATOIRE DE PHYSIQUE THEORIQUE DES LIQUIDES Université.
Three-body recombination at vanishing scattering lengths in ultracold atoms Lev Khaykovich Physics Department, Bar-Ilan University, Ramat Gan, Israel.
Experimental study of universal few-body physics with ultracold atoms Lev Khaykovich Physics Department, Bar-Ilan University, Ramat Gan, Israel Laboratoire.
Observation of an Efimov spectrum in an atomic system Matteo Zaccanti LENS, University of Florence.
Efimov Physics in a Many-Body Background
Few-body physics with ultracold fermions Selim Jochim Physikalisches Institut Universität Heidelberg.
Clustered fluid a novel state of charged quantum fluid mixtures H. Nykänen, T. Taipaleenmäki and M. Saarela, University of Oulu, Finland F. V. Kusmartsev.
E. Kuhnle, P. Dyke, M. Mark, Chris Vale S. Hoinka, Chris Vale, P. Hannaford Swinburne University of Technology, Melbourne, Australia P. Drummond, H. Hu,
Extended optical model analyses of elastic scattering and fusion cross sections for 6, 7 Li Pb systems at near-Coulomb-barrier energies by using.
Takuma Matsumoto (Kyushu Univ.) K. Minomo, K. Ogata a, M. Yahiro, and K. Kato b (Kyushu Univ, a RCNP, b Hokkaido Univ) Description for Breakup Reactions.
Efimov Physics with Ultracold Atoms Selim Jochim Max-Planck-Institute for Nuclear Physics and Heidelberg University.
Experimental study of Efimov scenario in ultracold bosonic lithium
Maykel L. González-Martínez ultracold temperatures October 3 th, Bordeaux.
Trap loss of spin-polarized 4 He* & He* Feshbach resonances Joe Borbely ( ) Rob van Rooij, Steven Knoop, Wim Vassen.
Lecture IV Bose-Einstein condensate Superfluidity New trends.
Resonance Scattering in optical lattices and Molecules 崔晓玲 (IOP, CASTU) Collaborators: 王玉鹏 (IOP), Fei Zhou (UBC) 大连.
Efimov physics in ultracold gases Efimov physics in ultracold gases Rudolf Grimm “Center for Quantum Optics” in Innsbruck Austrian Academy of Sciences.
Scales of critically stable few-body halo system Tobias Frederico Instituto Tecnológico de Aeronáutica São José dos Campos - Brazil  Marcelo T. Yamashita.
Experiments with an Ultracold Three-Component Fermi Gas The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites John Huckans.
Experimental determination of Universal Thermodynamic Functions for a Unitary Fermi Gas Takashi Mukaiyama Japan Science Technology Agency, ERATO University.
Eiji Nakano, Dept. of Physics, National Taiwan University Outline: 1)Experimental and theoretical background 2)Epsilon expansion method at finite scattering.
Optical lattices for ultracold atomic gases Sestri Levante, 9 June 2009 Andrea Trombettoni (SISSA, Trieste)
Pairing Gaps in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems Cheng Chin JFI and Physics, University of Chicago Exp.: Rudolf.
18.3 Bose–Einstein Condensation
Recent Advances in the Theoretical Methods and Computational Schemes for Investigations of Resonances in Few-Body Atomic Systems Y. K. Ho Institute of.
Adiabatic hyperspherical study of triatomic helium systems
Precision collective excitation measurements in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems A. Altmeyer 1, S. Riedl 12,
Dipolar relaxation in a Chromium Bose Einstein Condensate Benjamin Pasquiou Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France.
Specific heat of a fermionic atomic cloud in the bulk and in traps in the bulk and in traps Aurel Bulgac, Joaquin E. Drut, Piotr Magierski University of.
Agenda Brief overview of dilute ultra-cold gases
NTNU 2011 Dimer-superfluid phase in the attractive Extended Bose-Hubbard model with three-body constraint Kwai-Kong Ng Department of Physics Tunghai University,
Deterministic preparation and control of a few fermion system.
Extremely dilute, but strongly correlated: Experiments with ultracold fermions.
strongly interacting fermions: from spin mixtures to mixed species
Single-particle momentum distributions for bosonic trimer states
Making cold molecules from cold atoms
DILUTE QUANTUM DROPLETS
Presentation transcript:

Triatomic states in ultracold gases Marcelo Takeshi Yamashita Universidade Estadual Paulista - Brazil  Lauro Tomio – IFT / Unesp  Tobias Frederico – ITA  Francis Bringas - ITA  Antonio Delfino - UFF  Collaborators Work partially supported by

Guidelines Summary The Efimov states Bound states Virtual states Resonances Triatomic continuum resonances Three-body recombination for virtual and bound two- body states in ultracold traps

The Efimov effect - Thomas-Efimov equivalence Three-body bound state equation with zero-range interaction with momenta cutoff momentaenergies ε2ε2 0 (N = 0, 1, 2,...) Efimov states 1) E 2 tends to zero with Λ fixed – Efimov effect 2) Λ tends to infinity with E 2 fixed – Thomas collapse Adhikari, Frederico, and Goldman PRL 74, 487 (1995). Skorniakov and Ter-Martirosian equation (1956)

The Efimov states – bound, virtual and resonances Three-body bound state equation with zero-range interaction with subtraction Three-body resonances Three-body energy is complex x y Contour deformation method Three-body virtual states

The Efimov states – bound and virtual states Lines – Bound states crosses – ground squares – first excited diamonds – second excited Symbols – Virtual states circles - refers to the first excited state triangles – refers to the second excited state Appearance of the virtual state (dashed line) The virtual state turns into an excited state (solid line) ε 2 bound MTY, Frederico, Delfino, and Tomio PRA 66, (2002)

The Efimov states - resonances ε 2 virtual Resonances Bringas, MTY, and Frederico PRA 69, (R) (2004)

The Efimov states – trajectory of Efimov states Complete trajectory of Efimov states E3 bound E2 virtual E3 resonance E2 virtual E3 bound E2 bound E3 virtual E2 bound

The Efimov states – triatomic continuum resonances from “Evidence of Efimov quantum states in an ultracold gas of cesium atoms” ! T. Kraemer, M. Mark, P. Waldburger, J. G. Danzl, C. Chin, B. Engeser, A. D. Lange, K. Pilch, A. Jaakkola, H.-C. Nägerl & R. Grimm, Nature 440, 315 (2006) Excited Efimov state turns into a resonance From the experiment T = 0  a = -898 a 0

Real part Imaginary part x 0.1 Triatomic continuum resonances in an ultracold gas of cesium atoms From calculations Analytic approximations The Efimov states – triatomic continuum resonances

Adding the effects of triatomic continuum resonances in the recombination rate L 3 for T = 0 where The resonance energy can be approximated by We can easily find the solution of a r- for E r After performing the thermal average of the recombination rate th we have the recombination length For T = 0 E. Braaten, and H.-W. Hammer, Phys. Rep. 428, 259 (2006)

Recombination length in a cesium trapped gas as a function of the scattering length and temperature. Solid curves from up to bottom 10, 100, 200, 300, 400 and 500 nK. Symbols are the experimental results for 10 nK (full circles), 200 nK (full triangles) and 250 nK (open diamonds) from T. Kraemer et al., Nature 440, 315 (2006). Position of the maximum of the recombination length as a function of the temperature. Experimental data from B. Engeser et al., in preparation. The Efimov states – triatomic continuum resonances arxiv:cond-mat/

Weakly bound molecules Recombination for positive scattering lengths (two-body bound states) 1 triatomic bound state 2 triatomic bound states 3 triatomic bound states [1] [2] [3] [1] E. A. Burt et al. Phys. Rev. Lett. 79, 337 (1997). [2] D. M. Stamper-Kurn et al. Phys. Rev. Lett. 80, 2027 (1998). [3] N. R. Claussen, E. A. Donley, S. T. Thompson e C. E. Wieman. Phys. Rev. Lett. 87, (2001); J. L. Roberts, N. R. Claussen, S. L. Cornish e C. E. Wieman. ibid. 85, 728 (2000). Dimensionless recombination parameter α as a function of the ratio between the binding energies of the diatomic and triatomic molecules. MTY, Frederico, Delfino, and Tomio PRA 68, (2003)

Weakly bound molecules [1] E. A. Burt et al. Phys. Rev. Lett. 79, 337 (1997). [2] D. M. Stamper-Kurn et al. Phys. Rev. Lett. 80, 2027 (1998). [3] N. R. Claussen, E. A. Donley, S. T. Thompson e C. E. Wieman. Phys. Rev. Lett. 87, (2001); J. L. Roberts, N. R. Claussen, S. L. Cornish e C. E. Wieman. ibid. 85, 728 (2000). [4] J. Söding et al. Appl. Phys. B69, 257 (1999). * Non-condensate atoms** Condensed atoms Prediction of trimer binding energies with respect to the threshold, S 3 =E 3 -E 2 and S’ 3 =E’ 3 -E 2, considering the central values of the experimental recombination parameter  exp. It is also shown the respective two-body scattering length and the diluteness parameter  a 3.

Summary Complete trajectory of Efimov states for 3 identical bosons Prediction of trimer energies in atomic traps Scattering length and Recombination coefficient Inclusion of the triatomic continuum resonance effect in the recombination length Recombination length at finite temperatures Good description of the position of resonance as a function of the temperature Thank you !