1 stephan ettenauer for the TITAN collaboration Experimental Program on Halo Nuclei with non-accelerated Beams at TRIUMF Weakly Bound Systems in Atomic.

Slides:



Advertisements
Similar presentations
Grupo de Física Nuclear Experimental G F E N CSIC I M E January 2006, Hirschegg, AustriaM.J.G. Borge, IEM CSIC1 Hirschegg’06: Astrophysics and Nuclear.
Advertisements

Invariant-mass spectroscopy of neutron halo nuclei Takashi Nakamura 中村隆司 Tokyo Institute of Technology 東京工業大学 中日 NP 06, Shanghai.
Structure of the ECEC candidate daughter 112 Cd P.E. Garrett University of Guelph TRIUMF Excellence Cluster “Universe”, Technische Universität München.
CEA DSM Irfu Shell evolution towards 100 Sn Anna Corsi CEA Saclay/IRFU/SPhN.
EURISOL_DS – Task 11 Subtask 5 Neutron- and proton-induced reactions up to Fermi energy J. Äystö / V. Rubchenya JYFL, Jyväskylä (P9) / KhRI, St.Petersburg.
Unstable vs. stable nuclei: neutron-rich and proton-rich systems
Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
JYFLTRAP: Spectroscopy with multi-trap facility Facility Mass purified beams In-trap spectroscopy Future plans.
The LaSpec project. At FAIR… Cheapest(?),Fully destripped…

Limits of Stability Neutron Drip Line? Proton Drip Line? Known Nuclei Heavy Elements? Fission Limit?
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Superheavy Element Studies Sub-task members: Paul GreenleesJyväskylä Rodi Herzberg, Peter Butler, RDPLiverpool Christophe TheisenCEA Saclay Fritz HessbergerGSI.
Proton and Two-Proton Decay of a High-Spin Isomer in 94 Ag Ernst ROECKL GSI Darmstadt and Warsaw University.
The TITAN Facility at TRIUMF T. Brunner, A. Lapierre, R. Krücken, and J. Dilling for the TITAN collaboration Canada’s National Laboratory for Nuclear and.
Nuclear Level Densities of Residual Nuclei from evaporation of 64 Cu Moses B. Oginni Ohio University SNP2008 July 9, 2008.
1 TCP06 Parksville 8/5/06 Electron capture branching ratios for the nuclear matrix elements in double-beta decay using TITAN ◆ Nuclear matrix elements.
Nuclear physics input to astrophysics: e.g.  Nuclear structure: Masses, decay half lives, level properties, GT strengths, shell closures etc.  Reaction.
Lecture 2:Research frontiers 1 9/9/ FYPC Most recent long range planning reports: FYPC (Canada), NSAC (USA) Collision products at RHIC.
Spectroscopy of exotic nuclei Lecture 1 Reiner Krücken Physik Department E12 Technische Universität München Maier-Leibnitz Laboratory of TU München and.
Structures and shapes from ground state properties 1.Nuclear properties from laser spectroscopy 2.Status of laser measurements of moments and radii 3.New.
Collinear laser spectroscopy of 42g,mSc
Chapters 9, 11, 12 Concepts covered that will also be candidates for exam questions.
TITAN Mass Measurement of 11 Li (and other halo nuclei) Ryan Ringle, TRIUMF.
Preparation of an isomerically pure beam and future experiments Outline TAS Workshop, Caen, March 30-31, 2004 Klaus Blaum for the ISOLTRAP Collaboration.
Radioactive ion beam facilities How does they work ? 2012 Student Practice in JINR Fields of Research 9.oct.2012 I. Sivacekflerovlab.jinr.ru.
Mass measurements using low energy ion beams -1- C. Thibault 31 mars 2004 Motivations to measure masses Present status Experimental methods for direct.
Исследование запаздывающего деления и сосуществования форм в ядрах таллия, астата и золота (ИРИС, ПИЯФ — ISOLDE, CERN) A. E. Барзах, Ю. M. Волков, В. С.
Simple Atom, Extreme Nucleus: Laser Trapping and Probing of He-8 Zheng-Tian Lu Argonne National Laboratory University of Chicago Funding: DOE, Office of.
Sep. 2003CNS Summer School Feb 分 => Talk なら 35 枚だが、 lecture だと少なめ? 50 分 => Talk なら 35 枚だが、 lecture だと少なめ?
The REXTRAP Penning Trap Pierre Delahaye, CERN/ISOLDE Friedhelm Ames, Pierre Delahaye, Fredrik Wenander and the REXISOLDE collaboration TAS workshop, LPC.
Ion Preparation in TITAN’s RFQ
The Most Exotic Nuclei on Earth: Precision Experiments on Halo Nuclei Maxime Brodeur UBC graduate student, TRIUMF for the TITAN collaboration CANADA’S.
Fundamental Interactions Physics & Instrumentation Conclusions Conveners: P. Mueller, J. Clark G. Savard, N. Scielzo.
1 stephan ettenauer for the TITAN collaboration The Mass of 74 Rb: First Mass Measurements of Highly Charged, Short- lived Nuclides in a Penning Trap ISAC.
A mass-purification method for REX beams
Nanuf03, Bucharest, Stefan Kopecky Traps for fission product ions at IGISOL Experimental Facilities Mass Measurements Status and Future Perspectives.
W. Nazarewicz. Limit of stability for heavy nuclei Meitner & Frisch (1939): Nucleus is like liquid drop For Z>100: repulsive Coulomb force stronger than.
H.Sakurai Univ. of Tokyo Spectroscopy on light exotic nuclei.
Outline Sebastian George Tokyo 2007 High-Precision Mass Spectrometry
NS08 MSU, June 3rd – 6th 2008 Elisa Rapisarda Università degli studi di Catania E.Rapisarda 18 2.
FLAIR meeting, GSI March Positron Ring for Antihydrogen Production A.Sidorin for LEPTA collaboration JINR, Dubna.
Reaction studies with low-energy weakly-bound beams Alessia Di Pietro INFN-Laboratori Nazionali del Sud NN 2015Alessia Di Pietro,INFN-LNS.
B elgian R esearch I nitiative on e X otic nuclei ISOLDE INTC-P-316 Spokespersons: G. Neyens, M.M. Rajabali, K.U. Leuven Local contact: K.T. Flanagan,
Fusion of light halo nuclei
(F.Cusanno, M.Iodice et al,Phys. Rev. Lett (2009). 670 keV FWHM  M. Iodice,F.Cusanno et al. Phys.Rev.Lett. 99, (2007) 12 C ( e,e’K )
The BeTINa Collaboration
High-precision mass measurements below 48 Ca and in the rare-earth region to investigate the proton-neutron interaction Proposal to the ISOLDE and NToF.
Precision mass measurements of n-rich nuclei between N=50 and 82. Short overview on the experimental approach Penning trap mass measurements on n-rich.
ISOLDE Physics Report Magdalena Kowalska. Injector schedule since last meeting 2 September: confirmation of 2 more weeks with protons – until December.
February 12-15,2003 PROCON 2003, Legnaro-Padova, Italy Jean Charles THOMAS University of Leuven / IKS, Belgium University of Bordeaux I / CENBG, France.
The HITRAP Project at GSI For the HITRAP collaboration: Frank Herfurth GSI Darmstadt.
G. Bollen, INTC-NUPAC Meeting, CERN, Geneva, October 2005 Overview and Motivation Mass Measurements at ISOLDE … … and elsewhere Conclusions Mass Measurements.
LIST status and outlook Sven Richter for the LIST-, RILIS- and Target-Collaborations 21 st of August 2013.
Atom trapping and Recoil Ion Spectrometry for  -decay (and other BSM) studies H.W. Wilschut, KVI, Groningen Or why it is easier to measure things standing.
Nuclear structure research at ISOLTRAP 17th of November 2008 Dennis Neidherr University of Mainz Outline:  Motivation for our measurements  Xe/Rn results.
Alexander Herlert High-precision mass measurements for reliable nuclear-astrophysics calculations CERN, PH-IS NIC-IX, CERN, Geneva, June 29, 2006.
The experimental evidence of t+t configuration for 6 He School of Physics, Peking University G.L.Zhang Y.L.Ye.
Laser spectroscopy and beta-NMR for nuclear physics and applications Magdalena Kowalska CERN, PH-Dept Laser spectroscopy setups at ISOLDE Example – COLLAPS.
Nuclear structure experiments beyond the neutron dripline Unbound – resonance observed known to be unb ound 26 O 19,21 C 15 Be.
TRIGA-SPEC: Developement platform for MATS and LaSpec at FAIR Double-beta transition Q-value measurements with TRIGA-TRAP NUSTAR Meeting Christian.
Michael Dworschak, GSI for the SHIPTRAP collaboration
Towards anions laser cooling * Giovanni Cerchiari ( Elena Jordan Alban Kellerbauer Max-Planck-Insitut für Kernphysik (Saupfercheckweg.
One way to improve first class mass ISOLTRAP
Muon Spectroscopy WS, Villigen Nuclear charge radii measurements by collinear laser spectroscopy and Penning trap g-factor experiments: The need for.
Yuliya Aksyutina for the LAND-R3B collaboration Motivation
L. Acosta1, M. A. G. Álvarez2, M. V. Andrés2, C. Angulo3, M. J. G
gamma-transmission coefficients are most uncertain values !!!
Gross Properties of Nuclei
Study of the resonance states in 27P by using
Presentation transcript:

1 stephan ettenauer for the TITAN collaboration Experimental Program on Halo Nuclei with non-accelerated Beams at TRIUMF Weakly Bound Systems in Atomic and Nuclear Physics, March 2010

2 Outline Overview: Experimental Probes on Halo Production of Halo Nuclei non-accelerated TRIUMF – Laser Spectroscopy – Mass Measurements in Penning Trap Conclusion & Outlook TRIUMF

3 Halo Nuclei Two-proton halo One-neutron halo Two-neutron halo One-proton halo Four-neutron halo Binary system K. Tanaka et al., PRL 104, (2010) 22 C In 1985 Tanihata et al.: interaction cross section measurements (transmission experiment) 11 Li much larger than expected from general rule of stables: R N ~r 0 A 1/3 extra neutrons (or protons) in classically forbidden region I. Tanihata et al., PRL 55, 2676 (1985) Transmission Experiment T. Nakamura et al., PRL 103, (2009) 31 Ne New Candidates: would be heaviest nuclear halo system possibly p - wave 1n halo S 2n =10 keV S 2n =420 keV ⇒ mass required

4 beta Experimental Probes for Halos 4 Reaction Cross Sections Transfer Reaction Knockout Reactions Elastic Scattering Breakup Magnetic Moment Beta Decay Beta Delayed Particle Emission accelerated beams model depend. stopped or low E beam Mass Atomic Laser Spectroscop y this talk

5 Rare Isotope Production Beam cooler * ~ 60 keV ~ 10 MeV/u Experiments ~ 10 MeV/u ~ 100 MeV/u ExperimentsBeam cooler ~ 20 keV Charge- breeder Charge- breeder ISOL (TRIUMF, slow (~5 ms) BUT high intensityLow beam energy, ideal for decay and trap exp.Good beam quality (even cooled) & purityPost-acceleration for reaction studiesBUT element selective ionization ⇒ some elements not possible! In-Flight (MSU, GSI, RIKEN, GANIL):Production: fast, no chemistry involvedHigh beam energy, ideal for reaction exp.Life-time, masses, & basic discoveryLow intensity, poor beam quality & purity

6 TRIUMF TITAN (mass) collinear LS for 11 Li: W. Nörtershäuser et al.(GSI) 500 MeV protons target & ion source high resolution mass separator magnet pre-separator magnet to experiments ISOL-facility <60 keV nuclide yield [1/s]T 1/2 6 He2.00E ms 8 He ms 11 Li ms 11 Be1.90E s

7 Techniques: (anti)collinear LS two photon resonant LS LS of individual atoms in MOT } Charge Radius relative measurement ⇒ need reference: electron scattering (only possible with stables) Isotope Shift Mass shift Field Shift / Finite Size Shift Z.-C. Yan et al., PRL 100, (2008) atomic laser spectroscopyhigh precision atomic physics calculation with nuclear mass: need δδm < 1keV short lived (<10 ms) ⇒ Penning Traps for He, Li, Be: MS ∼ 10 GHz ⇔ FS ∼ 1 MHz in-beam

8 Laser spectroscopy of 11 Li R. Sanchez et al., PRL 96, (2006) from ISAC A Li + overall efficiency: 10 -4

9 Measurement Principle atomic level scheme: Li 1) 11 Li + from ISAC 2) neutralized in hot C - foil 3) two photon resonance 2s→3s spontaneous decay 3s→2p second laser: 2p→3d ionization detection of ions R. Sanchez et al., PRL 96, (2006) ⇒ Doppler free ⇒ scanν 0 broad narrow (transition of interest)

10 Spectra R. Sanchez et al., PRL 96, (2006) 6 Li 11 Li

11 M. Puchalski et al., PRL 97, (2006) Results R. Sanchez et al., PRL 96, (2006) isotope shifts 7 Li- A Li: 2s→3s reference r c ( 7 Li) = 2.39(3) fm At. Data Nucl. Data Tables 14, 479 (1974) Z.-C. Yan et al., PRL 100, (2008) mass shifts r c ( 11 Li) = 2.423(17)(30) fm reference r c mass: MISTRAL (2005) r c ( 11 Li) = 2.465(19)(30) fm mass: AME‘03 ! need mass !

12 TITAN ISAC beam: A + Penning traps: highest precision previously shortest 74 Rb with T 1/2 =65 ms CERN but 11 Li T 1/2 = 8.8 ms A. Kellerbauer et al., PRL 93, (2004) 1$CAN masses of halos: reflect binding energy separation energy: S n, Sp input to extract physical quantities from exp. (e.g. r c )

13 confinement: –strong axial, hom. B-field (3.7 T) –electrostatic quadrupolar field 3 eigenmotions cyclotron frequency quadrupolor rf- field (ring electrode) leads to conversion: magnetron ↔ reduced cyclotron radial energy: B Measurement Principle

14 initial magnetron preparation –dipolar RF excitation ~ 10 ms –Lorentz steerer quadrupolor rf- field extraction: through B-field E r to E l E l measured by TOF minimum at  c comparison to well known isotope Mass measurements in the MPET 10

15 Precise & Accurate accurate, but not precise precise, but not accurate line width (FWHM): ⇒ resolution: ⇒ even for T rf ∼ 10ms exact theoretical description even for non-ideal traps off-line tests with stables ⇒ control over systematics for TITAN: < 5 ppb possible L.S. Brown and G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986) G. Bollen et al., J. Appl. Phys. 88, 4355 (1990) M. König et al., Int. J. Mass Spect. 142, 95 (1995)Int. J. Mass Spect. 142, 95 (1995) M. Kretzschmarr, Int. J. Mass Spect. 246, 122 (2007) G. Bollen et al., J. Appl. Phys. 88, 4355 (1990) G. Gabrielse, PRL 102, (2009) M. Brodeur et al, PRC 80, (2009) 6 Li

16 Mass of 11 Li M. Smith et al., PRL 101, (2008) 11 Li ReferenceMass [u] AME’ (21) MISTRAL (54) TITAN (69) r c ( 11 Li) = 2.427(16)(30) fm eliminates mass as source of uncertainty! two neutron separation energy: S 2n = -M(A,Z) + M(A-2,Z) + 2n asymptotic waveform for Borromean system soft electric-dipole excitation models of 11 Li: adjust 9 Li-n interaction T. Nakamura et al., PRL 96, (2006)

17 Other Halos: Laser Spectroscopy P. Mueller et al., PRL 99, (2007) 6 He and 8 He Argonne Lab / GANIL LS in MOT all in MHz mass: dominating uncertainty W. Nörtershäuseret al., PRL 102, (2009) 811 Be: GSI collinear LS δm=6.4 keV (AME’03)

18 TITAN: 6 He & 8 He M. Brodeur et al., in prep.V. L. Ryjkov et al., PRL 101, (2008) 2 nd 8 He mass meas. 1 st 8 He mass meas. 6 He mass meas. New masses (M.E.=m-A) 1.7σ 4.0σ 4 He 6 He 8 He S. Bacca et al., Eur. Phys. J. A 42, 553 (2009) comparison to theory: need 3N interactions

19 TITAN: 11 Be R. Ringle et al., PLB 675, 170 (2009) mass ref. mass ex.[kev] δ MS ( 9 Be- 11 Be) 2s 1/2 → 2p 1/2 AME’ (6.4) (9) TITAN’ (58) (13) ⇒ confirms AME & improves precision ⇒ uncertainty of mass negligible for r c P. Mueller et al., PRL 99, (2007)

20 12 Be S. Ettenauer et al., PRC 81, (2010) calculation & measurement of r c in the near future → see talk of Thomas Neff T 1/2 = 24 ms ~ ions/s detectable at yield station  measurement possible TITAN: m.e.= (2.1) keV

21 Conclusions Interplay of various experimental approaches allow to identify & probe nuclear halos Combination of high precision –laser spectroscopy –mass measurements –atomic physics calculation benchmark theoretical models (mass, matter/charge radius,..) later this year: electric quadrupole moment of 11 Li TITAN: masses –to investigate established halos 14 Be(2n), 19 C(1n), 17 Ne(1p) –needed to decide if halo structure in 22 C and 31 Ne ⇒ charge radius } Outlook (TRIUMF)

22 TITAN collaboration M. Brodeur, T. Brunner, S. Ettenauer, A. Gallant, V. Simon, M. Smith, A. Lapierre, R. Ringle, V. Ryjkov, M. Simon, M. Good, P. Delheij, D. Lunney, and J. Dilling for the TITAN collaboration

23 Backup Slides

24 AC Stark Effect R. Sanchez et al., PRL 96, (2006)

25 6 He and 8 He: Laser Spectroscopy

26 He: Comparison with theory Both the GFMC & NCSM r c agrees with new exp. 6,8 He r c Method that provides the closest values to experiment Only method that uses 3 nucleons interaction (3NI) GFMC 2NI 3NI NCSM Produce a physical r c for an unbound nuclei, consequence of using faster Gaussian fall-off and small model space. !

27 11 Be: Laser Spectroscopy W. Nörtershäuseret al., PRL 102, (2009)

28 11 Be: Comparison to Models