UNIVERSITY OF MARYLAND AT COLLEGE PARK High-intensity optical slow-wave structure for direct laser electron acceleration H.M. Milchberg, B.D. Layer, A.

Slides:



Advertisements
Similar presentations
Vulcan Front End OPCPA System
Advertisements

Erdem Oz* USC E-164X,E167 Collaboration Plasma Dark Current in Self-Ionized Plasma Wake Field Accelerators
CO 2 laser system M. Polyanskiy, I. Pogorelsky, M. Babzien, and V. Yakimenko.
The scaling of LWFA in the ultra-relativistic blowout regime: Generation of Gev to TeV monoenergetic electron beams W.Lu, M.Tzoufras, F.S.Tsung, C. Joshi,
Physics of a 10 GeV laser-plasma accelerator stage Eric Esarey HBEB Workshop, Nov , C. Schroeder, C. Geddes, E. Cormier-Michel,
Particle acceleration in plasma By Prof. C. S. Liu Department of Physics, University of Maryland in collaboration with V. K. Tripathi, S. H. Chen, Y. Kuramitsu,
Contour plots of electron density 2D PIC in units of  [n |e|] cr wake wave breaking accelerating field laser pulse Blue:electron density green: laser.
Historical Review on the Plasma Based Particle Accelerators Congratulation for opening “Plasma and Space Science Center” Yasushi Nishida Lunghwa University.
Particle-Driven Plasma Wakefield Acceleration James Holloway University College London, London, UK PhD Supervisors: Professor Matthew wing University College.
西湖国际聚变理论与模拟研讨会 西湖国际聚变理论与模拟研讨会 M. Y. Yu 郁明阳 Institute for Fusion Theory and Simulation Zhejiang University Hangzhou
S. Varma, Y.-H. Chen, and H. M. Milchberg Institute for Research in Electronics and Applied Physics Dept. of Electrical and Computer Engineering Dept.
Ultrafast Manipulation of the Magnetization J. Stöhr Sara Gamble and H. C. Siegmann, SLAC, Stanford A. Kashuba Bogolyubov Institute for Theoretical Physics,
GEOMETRIC EFFECTS ON EUV EMISSIONS IN M. S. Tillack, K. L. University of California San Diego.
Lecture 3: Laser Wake Field Acceleration (LWFA)
UCLA The X-ray Free-electron Laser: Exploring Matter at the angstrom- femtosecond Space and Time Scales C. Pellegrini UCLA/SLAC 2C. Pellegrini, August.
1 Pukhov, Meyer-ter-Vehn, PRL 76, 3975 (1996) Laser pulse W/cm 2 plasma box (n e /n c =0.6) B ~ mc  p /e ~ 10 8 Gauss Relativistic electron beam.
2 Lasers: Centimeters instead of Kilometers ? If we take a Petawatt laser pulse, I=10 21 W/cm 2 then the electric field is as high as E=10 14 eV/m=100.
R & D for particle accelerators in the CLF Peter A Norreys Central Laser Facility STFC Fellow Visiting Professor, Imperial College London.
RF particle acceleration Kyrre N. Sjøbæk * FYS 4550 / FYS 9550 – Experimental high energy physics University of Oslo, 26/9/2013 *k.n.sjobak(at)fys.uio.no.
High Harmonic Generation in Gases Muhammed Sayrac Texas A&M University.
March 2011Particle and Nuclear Physics,1 Experimental tools accelerators particle interactions with matter detectors.
Particle-in-Cell Modeling of Rf Breakdown in Accelerating Structures and Waveguides Valery Dolgashev, SLAC National Accelerator Laboratory Breakdown physics.
1 Gas-Filled Capillary Discharge Waveguides Simon Hooker, Tony Gonsalves & Tom Rowlands-Rees Collaborations Alpha-X Basic Technology programme (Dino Jaroszynski.
Progress of Novel Vacuum Laser Acceleration Experiment at ATF Xiaoping Ding, Lei Shao ATF Users’ Meeting, Apr. 4-6, 2007 Collaborators: D. Cline (PI),
FACET and beam-driven e-/e+ collider concepts Chengkun Huang (UCLA/LANL) and members of FACET collaboration SciDAC COMPASS all hands meeting 2009 LA-UR.
Ultrafast particle and photon sources driven by intense laser ‐ plasma interaction Jyhpyng Wang Institute of Atomic and Molecular Sciences, Academia Sinica.
Compton/Linac based Polarized Positrons Source V. Yakimenko BNL IWLC2010, Geneva, October 18-22, 2010.
Particle acceleration by circularly polarized lasers W-M Wang 1,2, Z-M Sheng 1,3, S Kawata 2, Y-T Li 1, L-M Chen 1, J Zhang 1,3 1 Institute of Physics,
Compton based Polarized Positrons Source for ILC V. Yakimenko Brookhaven National Laboratory September 12, 2006 RuPAC 2006, Novosibirsk.
Yen-Yu Chang, Li-Chung Ha, Yen-Mu Chen Chih-Hao Pai Investigator Jypyng Wang, Szu-yuan Chen, Jiunn-Yuan Lin Contributing Students Institute of Atomic and.
Free Electron Lasers (I)
Beam dynamics on damping rings and beam-beam interaction Dec 포항 가속기 연구소 김 은 산.
Recent Results on the Plasma Wakefield Acceleration at FACET E 200 Collaboration 1)Beam loading due to distributed injection of charge in the wake reduces.
Transverse Profiling of an Intense FEL X-Ray Beam Using a Probe Electron Beam Patrick Krejcik SLAC National Accelerator Laboratory.
Two Longitudinal Space Charge Amplifiers and a Poisson Solver for Periodic Micro Structures Longitudinal Space Charge Amplifier 1: Longitudinal Space Charge.
Application of Plasma Waveguides to Advanced High Energy Accelerators H.M. Milchberg +* and T.M. Antonsen, Jr. #* * Institute for Physical Science and.
Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan National Taiwan University, Taiwan National Central University, Taiwan National Chung.
Nonlinear Optics in Plasmas. What is relativistic self-guiding? Ponderomotive self-channeling resulting from expulsion of electrons on axis Relativistic.
VARIOUS MECHANISMS OF ELECTRON HEATING AT THE IRRADIATION OF DENSE TARGETS BY A SUPER-INTENSE FEMTOSECOND LASER PULSE Krainov V.P. Moscow Institute of.
LASER-PLASMA ACCELERATORS: PRODUCTION OF HIGH-CURRENT ULTRA-SHORT e - -BEAMS, BEAM CONTROL AND RADIATION GENERATION I.Yu. Kostyukov, E.N. Nerush (IAP RAS,
Relativistic nonlinear optics in laser-plasma interaction Institute of Atomic and Molecular Sciences Academia Sinica, Taiwan National Central University,
W.Lu, M.Tzoufras, F.S.Tsung, C.Joshi, W.B.Mori
High gradient acceleration Kyrre N. Sjøbæk * FYS 4550 / FYS 9550 – Experimental high energy physics University of Oslo, 26/9/2013 *k.n.sjobak(at)fys.uio.no.
SIMULATIONS FOR THE ELUCIDATION OF ELECTRON BEAM PROPERTIES IN LASER-WAKEFIELD ACCELERATION EXPERIMENTS VIA BETATRON AND SYNCHROTRON-LIKE RADIATION P.
Enhancing the Macroscopic Yield of Narrow-Band High-Order Harmonic Generation by Fano Resonances Muhammed Sayrac Phys-689 Texas A&M University 4/30/2015.
Design of Microwave Undulator Cavity
1 1 Office of Science C. Schroeder, E. Esarey, C. Benedetti, C. Geddes, W. Leemans Lawrence Berkeley National Laboratory FACET-II Science Opportunities.
GWENAEL FUBIANI L’OASIS GROUP, LBNL 6D Space charge estimates for dense electron bunches in vacuum W.P. LEEMANS, E. ESAREY, B.A. SHADWICK, J. QIANG, G.
Non Double-Layer Regime: a new laser driven ion acceleration mechanism toward TeV 1.
Switching with Ultrafast Magnetic Field Pulses Ioan Tudosa.
Prospects for generating high brightness and low energy spread electron beams through self-injection schemes Xinlu Xu*, Fei Li, Peicheng Yu, Wei Lu, Warren.
BESTIA – the next generation ultra-fast CO 2 laser for advanced accelerator research Igor Pogorelsky Misha Polyanskiy, Marcus Babzien, John Skaritka, Ilan.
Ionization Injection E. Öz Max Planck Institute Für Physik.
Coherent THz radiation source driven by pre-bunched electron beam
1 1 Office of Science Plasma control & diagnostics for 10 GeV electron beams on BELLA Work supported by: Office of Science, Office of HEP, US DoE Contract.
L. Corner and T. Hird John Adams Institute for Accelerator Science, Oxford University, UK 1AAC, USA, 2016 The efficient generation of radially polarised.
V.N. Litvinenko (SBU) C. Joshi, W. Mori (UCLA)
Electron acceleration behind self-modulating proton beam in plasma with a density gradient Alexey Petrenko.
The 2nd European Advanced Accelerator Concepts Workshop
SUPA, Department of Physics, University of Strathclyde,
8-10 June Institut Henri Poincaré, Paris, France
Wakefield Accelerator
Control of laser wakefield amplitude in capillary tubes
All-Optical Injection
E-164 E-162 Collaboration: and E-164+X:
Review of Application to SASE-FELs
Using a Bessel Light Beam as an Ultra-short Period Helical Undulator
CLIC Feasibility Demonstration at CTF3
Enhanced Self-Amplified Spontaneous Emission
EX18710 (大阪大学推薦課題) 課題代表者  矢野 将寛 (大阪大学大学院 工学研究科) 研究課題名
Presentation transcript:

UNIVERSITY OF MARYLAND AT COLLEGE PARK High-intensity optical slow-wave structure for direct laser electron acceleration H.M. Milchberg, B.D. Layer, A. York, J. Palastro, T, Antonsen University of Maryland, College Park HEDSA 2009

Conventional accelerators high energy physics 27 km circumference constraints: R > R min  synchrotron radiation loss E accel < V/m  structure breakdown LEP (CERN) (100 GeV) SLAC (50 GeV) 3 km

The SLAC structure is periodically modulated 50 GeV in 3.2 km 50 GeV/(1.7x10 7 V/m) ~ 2 miles Solution: use ‘milder’ fields over longer distance view from space EzEz E transverse B transverse EM propagation & particle accel. ‘slow-wave’ structure wave phase velocity < c internal breakdown (lightening!) and self-destruction if wave fields are greater than ~ 10 7 Volts/m accelerator waveguide structure

relativistic electron beam relativistic electron spectrometer ‘conventional’ laser- plasma wakefields: intense laser pulse enters gas jet and relativistic electron beam emerges pulse speed is v g < c 150  m Laser pond. force for >10 18 W/cm 2 pushes electrons out of the way E E E E E Plasma oscillation: “wake-field”

~35 μm z (µm) -200 r (µm) Radially modulated 100ps Nd:YAG laser pulse Axially modulated plasma waveguide 35 fs Ti:Sapphire laser pulse (e) (a) 50 fs transverse interferometer probe 13 µm (e) 13µm Axicon (b) (d) 300 µm 35µm 200µm 50µm 35 µm 50µm (c) But can we imitate SLAC using a plasma? YES! 

0 radius (  m) 10 4 bar pressure Plasma cross-section during and immediately after pulse: 25 Principle of plasma waveguide: example of hydrodynamic shock generation experimental electron density profiles after pulse: blast wave expansion “hollows” the N e profile A hollow electron density profile acts as a focusing element plasma index of refraction N e (r) lower in middle results in index n larger there focusing

 k  L coherence =  L coherence ‘Slow wave’ structure quasi-phase matching Particle accelerationEM wave generation v particle < v wave phase Charged particle dephasing E pump z-v pump t Phase mismatch v pump ≠ v generated EzEz z-v phase t v phase >c electron

Slow wave picture d z rr where Bloch-Floquet condition: Wave number of m th axial harmonic m th harmonic is ‘slow’ if where

Electron acceleration: slow wave picture Electron energy gain For the ‘matched’ case get

Accelerating region: low plasma density (high index) Decelerating region: high plasma density (low index) n 1 > n 2 Mod period d=L 1 +L 2 L d1 L d2 Example: density modulation Quasi-phase matching picture The driving wave speeds up and slows down in successive portions of the modulation so that the acceleration in the first part is not completely cancelled by deceleration in the second part. Energy gain per period: where

Outline reminder about clusters -heating and plasma formation with femtosecond pulses (PRLs <2005) -heating and plasma formation with long (many picosecond) pulses formation of axially modulated (corrugated) plasma fibres using long pulses - axially modulated heating pulse - tailored cluster flow direct laser acceleration

Clusters are essential! Energetic electrons/ions Neutrons Cluster jet X-rays: A. McPherson et al., PRL 72, 1810 (1994). EUV and x-rays: * E. Parra et al., PRE 62, R5931 (2000). Optical properties: Kim, Alexeev, Milchberg, PRLs 2003, 2005 Fast electrons and ions: Y. L. Shao et al., PRL 77, 3343 (1996); † V. Kumarappan et al., PRL 87, (2001). Nuclear fusion: T. Ditmire et al., Nature (London) 398, 489 (1999). EUV spectrum * X-ray signal* X-rays EUV Clusters few Å ~ 500 Å ~ atoms— explode in < 1 ps TOF mass spectrum † Laser pulse Scattering >90% laser absorption

Why do 100ps pulses efficiently heat clusters? The far leading edge of the 100ps beam disassembles / ionizes the clusters, leaving a cool high Z plasma that the remainder of the pulse heats. Much more efficient than heating an unclustered gas (for same average Z in a plasma, up to 10x less pump energy required) % absorption 50 Å ~ 600 Å Single Ar cluster                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Critical density layer High Z, cool, under-dense plasma Sub-critical plasma Super-critical plasma a H. Sheng et al, Phys. Rev. E 72, (2005)

enhanced absorption, even for very long (100ps) pulses because absorption is local to a cluster, can ultimately form plasma channels with N e ~ cm  3 electron density* and lower efficiently makes plasma channels in anything that decently clusters Typically 10X more efficient than for equivalent vol. average pressures of unclustered gas Cryogenic cluster jet Controlled cryogenic cooling of the jet enhances clustering 2 cm

First modulation method- modulated Bessel beam and uniform cluster flow Breakdown in Argon clustersBreakdown in atmosphere mj 100ps Nd:YAG pulse, axially modulated with diffractive optics, incident on unmodulated cluster jet flows Ex. ~2mm corrugation period 1.5cm

Guiding in corrugated hydrogen plasma channels H 2 jet cryogenically cooled to enhance clustering Electron densities of ~1.5*10 18 cm -3 on axis and ~3*10 18 cm -3 at channel wall for a delay of 1ns 15µm W/cm 2 (b) (i) (ii) (iii) 700 µm 500 µm 200 mJ300 mJ500 mJ + misalign. Waveguide generation pulse energy and alignment controls modulation features

Extended high intensity guiding 1 mm 700µm beadscontinuous No injection injection Pump scattering Abel inversion Pump scattering

cm -3 3 mm 660µm Extended high intensity guiding without injection injection, 2x10 17 W/cm 2 at exit laser

Propagation simulation using the code WAKE* W/cm 2 * P. Mora and T. M. Antonsen Jr., Phys. Plasmas 4, 217 (1997). Simulation using experimental density profiles Attenuation from leakage at gaps

Second method: wire-tailored cluster flow, unmodulated laser pulse uniform 500mj 100ps Nd:YAG pulse incident on axially modulated Argon cluster target 1mm corrugation period 1.5 cm

Features persist for the full life of the waveguide Nitrogen cluster -150 deg C, 25  m wires Argon cluster 22 deg C, 25  m wires 160 μm 320 μm 0.5 ns 1.0 ns 2.0 ns 6.0 ns 2.0 ns 0.5 ns (200 consecutive shot averages) 600 μm B.D. Layer et. al, Opt Express 17, 4263 (2009)

Direct laser acceleration- inverse Cherenkov acceleration (ICA) 580-MW peak power  31 MeV/m. 10 TW peak powers are now routine, but the need for neutral- gas phase matching strongly limits peak intensities.

Nd:YAG laser pulse axicon Corrugated plasma waveguide Relativistic electron bunch Radially polarized fs laser pulse Clustered H 2 jet Diffractive optic

Corrugated guide: simple estimates of dephasing lengths and acceleration gradients n1 > n2 One full dephasing cycle Estimate acceleration gradients using index modulation: Accelerating-phase region: low index Decelerating-phase region: high index λ = 800nm N e1 = 3*10 18 cm -3 N e2 = 6*10 18 cm -3 w ch = 12μm p = 1, m = 0 } L d1 = ~260 μm L d2 =~165 μm For P = 1 TW, E z =0.55 GV/cm, giving an effective gradient of 77 MV/cm Wakefield comparison: Malka et al. used a 30 TW laser at λ = 0.8 μm to produce an acceleration gradient of ~0.66 GV/cm This is a linear process with no threshold. 1 mJ regenerative amplifier alone P = 20GW  Effective accel. gradient: 11 MV/cm

electrons distributed uniformly on axis 1 to 11  m behind pulse peak no transverse momentum  time (ps) m=1 phase velocity matched to initial electron velocity m=1 phase velocity set to c  o =1000  o =100  o =30 Ideal scaling it is better when electrons catch up with a faster wave than to start them phase matched to a slower wave  Direct laser acceleration- energy gain

Comparing direct accel to other schemes parameters used for comparison: =800 nm w ch =15  m a o =.25 n o =7x10 18 cm -3  =.9 m =.035 cm  o =100  z =300 fs*c for direct accel we have:  = 1000 semi-infinite vacuum acceleration:  = 12.5 (best case scenario) vacuum beat wave acceleration:  = 8.3 ( 1 =2 2 ) laser wakefield acceleration:  = 14.3

Electron Beam Density final electron density -81  m 81  m 300 xfxf zfzf -1  m xfxf number averaged final momentum -11  m num. (a.u.) p z (m e c) density peaks off axis; beam has acquired sizeable transverse spread 81  m -81  m off-axis peaks mostly composed of low energy electrons high energy electrons remain confined to center of beam only the ponderomotive transverse force is significant for these electrons

Can make modulated plasma waveguides with two distinct methods- modulating either the laser heating profile or the clustered target flow Can control nearly every aspect of the waveguide by varying cluster parameters and pump laser intensity Gas cluster channels can be more than 10X less dense than unclustered gas channels (10 17 ’s ’s vs ’s) and use 10X less laser energy for generation- Cluster-generated plasma waveguides are extremely stable (longitudinal AND transverse) and can support finely engineered structures. Summary One application: Direct laser accelerator optical-frequency LINAC with no damage threshold