Ch3 Data Warehouse Dr. Bernard Chen Ph.D. University of Central Arkansas Fall 2009.

Slides:



Advertisements
Similar presentations
An overview of Data Warehousing and OLAP Technology Presented By Manish Desai.
Advertisements

April 30, Data Warehousing and OLAP Technology: An Overview  What is a data warehouse?  Data warehouse architecture  From data warehousing to.
Data Warehousing.
Data Warehousing CPS216 Notes 13 Shivnath Babu. 2 Warehousing l Growing industry: $8 billion way back in 1998 l Range from desktop to huge: u Walmart:
ICS 421 Spring 2010 Data Warehousing (1) Asst. Prof. Lipyeow Lim Information & Computer Science Department University of Hawaii at Manoa 3/18/20101Lipyeow.
Data Warehouse IMS5024 – presented by Eder Tsang.
Data Warehousing.
Dr. M. Sulaiman Khan Dept. of Computer Science University of Liverpool 2010 COMP207: Data Mining Data Warehousing COMP207: Data Mining.
Lab3 CPIT 440 Data Mining and Warehouse.
By N.Gopinath AP/CSE. Two common multi-dimensional schemas are 1. Star schema: Consists of a fact table with a single table for each dimension 2. Snowflake.
Data Warehousing. On-Line Analytical Processing (OLAP) Tools The use of a set of graphical tools that provides users with multidimensional views of their.
Chapter 13 The Data Warehouse
DATA WAREHOUSE (Muscat, Oman).
1 Data Warehousing and OLAP. 2 Data Warehousing & OLAP Defined in many different ways, but not rigorously.  A decision support database that is maintained.
Data Warehousing DSCI 4103 Dr. Mennecke Introduction and Chapter 1.
An Overview of Data Warehousing and OLTP Technology Presenter: Parminder Jeet Kaur Discussion Lead: Kailang.
Ch3 Data Warehouse Dr. Bernard Chen Ph.D. University of Central Arkansas Fall 2010.
1 Data Warehouses C hapter 2. 2 Chapter 2 Outline Chapter 2 Outline – Introduction –Data Warehouses –Data Warehouse in Organisation – OLTP vs. OLAP –Why.
Business Intelligence Instructor: Bajuna Salehe Web:
M ODULE 5 Metadata, Tools, and Data Warehousing Section 4 Data Warehouse Administration 1 ITEC 450.
August 14, 2015Data Mining: Concepts and Techniques 1 Chapter 3: Data Warehousing and OLAP Technology: An Overview What is a data warehouse? Data warehouse.
Chapter 1 Database and Database Users Dr. Bernard Chen Ph.D. University of Central Arkansas Fall 2008.
Dr. Bernard Chen Ph.D. University of Central Arkansas
8/20/ Data Warehousing and OLAP. 2 Data Warehousing & OLAP Defined in many different ways, but not rigorously. Defined in many different ways, but.
An overview of Data Warehousing and OLAP Technology
DW-1: Introduction to Data Warehousing. Overview What is Database What Is Data Warehousing Data Marts and Data Warehouses The Data Warehousing Process.
Data Warehouse Overview September 28, 2012 presented by Terry Bilskie.
Business Intelligence Zamaneh Jahed. What is Business Intelligence? Business Intelligence (BI) is a broad category of applications and technologies for.
Data Warehouse and Business Intelligence Dr. Minder Chen Fall 2009.
Data warehousing and online analytical processing- Ref Chap 4) By Asst Prof. Muhammad Amir Alam.
Data Warehousing Xintao Wu. Can You Easily Answer These Questions? What are Personnel Services costs across all departments for all funding sources? What.
1 Data Warehouses BUAD/American University Data Warehouses.
OLAP & DSS SUPPORT IN DATA WAREHOUSE By - Pooja Sinha Kaushalya Bakde.
Data Warehousing.
CISB594 – Business Intelligence
October 28, Data Warehouse Architecture Data Sources Operational DBs other sources Analysis Query Reports Data mining Front-End Tools OLAP Engine.
Building Data and Document-Driven Decision Support Systems How do managers access and use large databases of historical and external facts?
Decision Support and Date Warehouse Jingyi Lu. Outline Decision Support System OLAP vs. OLTP What is Date Warehouse? Dimensional Modeling Extract, Transform,
Dr. N. MamoulisAdvanced Database Technologies1 Topic 6: Data Warehousing & OLAP Defined in many different ways, but not rigorously. A decision support.
CISB594 – Business Intelligence Data Warehousing Part I.
Data Mining Lecture 2. Course Syllabus Course topics: Introduction (Week1-Week2) –What is Data Mining? –Data Collection and Data Management Fundamentals.
Fox MIS Spring 2011 Data Warehouse Week 8 Introduction of Data Warehouse Multidimensional Analysis: OLAP.
UNIT-II Principles of dimensional modeling
MAIN BOOKS 1. DATA WAREHOUSING IN THE REAL WORLD : Sam Anshory & Dennis Murray, Pearson 2. DATA MINING CONCEPTS AND TECHNIQUES : Jiawei Han & Micheline.
CISB594 – Business Intelligence Data Warehousing Part I.
Data Mining Data Warehouses.
Business Intelligence Transparencies 1. ©Pearson Education 2009 Objectives What business intelligence (BI) represents. The technologies associated with.
Pooja Sharma Shanti Ragathi Vaishnavi Kasala. BUSINESS BACKGROUND Lowe's started as a single hardware store in North Carolina in 1946 and since then has.
CISB594 – Business Intelligence Data Warehousing Part I.
January 21, 2016Data Mining: Concepts and Techniques 1 Chapter 3: Data Warehousing and OLAP Technology: An Overview What is a data warehouse? A multi-dimensional.
The Data Warehouse Chapter Operational Databases = transactional database  designed to process individual transaction quickly and efficiently.
Copyright© 2014, Sira Yongchareon Department of Computing, Faculty of Creative Industries and Business Lecturer : Dr. Sira Yongchareon ISCG 6425 Data Warehousing.
The Need for Data Analysis 2 Managers track daily transactions to evaluate how the business is performing Strategies should be developed to meet organizational.
Introduction to OLAP and Data Warehouse Assoc. Professor Bela Stantic September 2014 Database Systems.
Copyright © 2016 Pearson Education, Inc. Modern Database Management 12 th Edition Jeff Hoffer, Ramesh Venkataraman, Heikki Topi CHAPTER 9: DATA WAREHOUSING.
Data Mining and Data Warehousing: Concepts and Techniques What is a Data Warehouse? Data Warehouse vs. other systems, OLTP vs. OLAP Conceptual Modeling.
Data Mining: Data Warehousing
Data warehouse and OLAP
Data Warehouse—Subject‐Oriented
OLAP Concepts and Techniques
Data Warehouse.
Data Warehousing and OLAP Technology for Data Mining
Data Warehouse and OLAP
Overview of Data Warehousing and OLAP
Data Warehouse Overview September 28, 2012 presented by Terry Bilskie
Dr. Bernard Chen Ph.D. University of Central Arkansas Fall 2009
Data Mining: Concepts and Techniques
Data Warehouse and OLAP
Data Warehouse and OLAP Technology
Presentation transcript:

Ch3 Data Warehouse Dr. Bernard Chen Ph.D. University of Central Arkansas Fall 2009

What is Data Warehouse? Loosely speaking, a data warehouse refers to a database that is maintained separately from an organization’s operational database Officially speaking: “A data warehouse is a subject-oriented, integrated, time-variant, and nonvolatile collection of data in support of management’s decision-making process.”—W. H. Inmon

Data Warehouse—Subject- Oriented Organized around major subjects, such as customer, product, sales Focusing on the modeling and analysis of data for decision makers, not on daily operations or transaction processing Provide a simple and concise view around particular subject issues by excluding data that are not useful in the decision support process

Data Warehouse—Integrated Constructed by integrating multiple, heterogeneous data sources relational databases, flat files, on-line transaction records Data cleaning and data integration techniques are applied. Ensure consistency in naming conventions, encoding structures, attribute measures, etc. among different data sources E.g., Hotel price: currency, tax, breakfast covered, etc. When data is moved to the warehouse, it is converted.

Data Warehouse—Time Variant The time horizon for the data warehouse is significantly longer than that of operational systems Operational database: current value data Data warehouse data: provide information from a historical perspective (e.g., past 5-10 years)

Data Warehouse—Nonvolatile A physically separate store of data transformed from the operational environment Operational update of data does not occur in the data warehouse environment Does not require transaction processing, recovery, and concurrency control mechanisms Requires only two operations in data accessing: initial loading of data and access of data

Data Warehouse vs. Heterogeneous DBMS Traditional heterogeneous DB integration: A query driven approach Build wrappers/mediators on top of heterogeneous databases Data warehouse: update-driven, high performance Information from heterogeneous sources is integrated in advance and stored in warehouses for direct query and analysis

Data Warehouse vs. Operational DBMS OLTP (on-line transaction (query) processing) Major task of traditional relational DBMS Day-to-day operations: purchasing, inventory, banking, manufacturing, payroll, registration, accounting, etc. OLAP (on-line analytical processing) Major task of data warehouse system Data analysis and decision making

Data Warehouse vs. Operational DBMS Distinct features (OLTP vs. OLAP): User and system orientation: customer vs. market Data contents: current, detailed vs. historical, consolidated Database design: ER + application vs. star + subject View: current, local vs. evolutionary, integrated Access patterns: update vs. read-only but complex queries

Data Warehouse vs. Operational DBMS

Why Separate Data Warehouse? High performance for both systems DBMS— tuned for OLTP: access methods, indexing, concurrency control, recovery Warehouse—tuned for OLAP: complex OLAP queries, multidimensional view, consolidation

A multi-dimensional data model A data warehouse is based on a multidimensional data model which views data in the form of a data cube

Data cube A data cube, such as sales, allows data to be modeled and viewed in multiple dimensions Suppose ALLELETRONICS create a sales data warehouse with respect to dimensions Time Item Location

3D Data cube Example

Data cube A data cube, such as sales, allows data to be modeled and viewed in multiple dimensions Suppose ALLELETRONICS create a sales data warehouse with respect to dimensions Time Item Location Supplier

4D Data cube Example

Practice Question What is a 5D cube looks like?

Conceptual Modeling of Data Warehouses Star schema Snowflake schema Fact constellations

Conceptual Modeling of Data Warehouses Star schema: A fact table in the middle connected to a set of dimension tables It contains: A large central table (fact table) A set of smaller attendant tables (dimension table), one for each dimension

Star schema

Conceptual Modeling of Data Warehouses Snowflake schema: A refinement of star schema where some dimensional hierarchy is further splitting (normalized) into a set of smaller dimension tables, forming a shape similar to snowflake However, the snowflake structure can reduce the effectiveness of browsing, since more joins will be needed

Snowflake schema

Conceptual Modeling of Data Warehouses Fact constellations: Multiple fact tables share dimension tables, viewed as a collection of stars, therefore called galaxy schema or fact constellation

Fact constellations