Carbon Monoxide “Insertion” Siyu Ye
22 The term “insertion” is used to describe the process whereby an unsaturated moiety, which may or may not be coordinated to the metal initially, becomes bonded to the metal and to a saturated ligand (which was initially attached to the metal center). Anderson, G. K.; Cross, R. J. Acc. Chem. Res. 1984,17, 67.
33 Content 1.Introduction 2.Acid Induced Carbonylation 3.Main Group Metal Induced Carbonylation 4.Transition Metal Induced Carbonylation 5.Conclusion Background Methanol Carbonylation Hydroformylation Double Carbonylation
44 Content 1.Introduction 2.Acid Induced Carbonylation 3.Main Group Metal Induced Carbonylation 4.Transition Metal Induced Carbonylation 5.Conclusion Background Methanol Carbonylation Hydroformylation Double Carbonylation
5 The CO Molecule C + O -, electronegativity C - O +, a low dipole moment of D Molecular Orbital of Carbon Monoxide Henrici-Olivé, G.; Olivé, S. The Chemistry of the Catalyzed Hydrogenation of Carbon Monoxide; Springer-Verlag: Berlin, Heidelberg, New York, Tokyo, 1984; p LUMO HOMO
6 Migratory Insertion Which is more appropriate?
77 Calderazzo, F. Angew. Chem., Int. Ed. 1977, 16, 299. Brunner, H.; Vogt, H. Angew. Chem., Int. Ed. 1981, 20, 405. alkyl migration CO migration
88 Influence Factors Cavell, K. J. Coord. Chem. Rev. 1996, 155, 209. cis-(CO/Me) trans-(P/Me), ligand with a large trans influence θ, angle of L-M-X partial negative charge at alkyl group partial positive charge at CO
9 Absence of Acyl-to-CO Migration Ni-C (acetyl) bond (184 pm) < Ni-C σ bond (194 pm) Ti-C (acetyl) bond (207 pm) < Ti-C σ bond (214 pm) M-C (acetyl) bond, a partial double bond 9 Henrici-Olivé, G.; Olivé, S. The Chemistry of the Catalyzed Hydrogenation of Carbon Monoxide; Springer-Verlag: Berlin, Heidelberg, New York, Tokyo, 1984; p 79.
10 Content 1.Introduction 2.Acid Induced Carbonylation 3.Main Group Metal Induced Carbonylation 4.Transition Metal Induced Carbonylation 5.Conclusion Background Methanol Carbonylation Hydroformylation Double Carbonylation
11 Koch carbonylation Farcasiu, D.; Schlosberg, R. H. J. Org. Chem. 1982, 47, 151. Acid Induced Carbonylation
12 Content 1.Introduction 2.Acid Induced Carbonylation 3.Main Group Metal Induced Carbonylation 4.Transition Metal Induced Carbonylation 5.Conclusion Background Methanol Carbonylation Hydroformylation Double Carbonylation
13 Li Induced Carbonylation Seyferth, D.; Weinstein, R. M. J. Am. Chem. Soc. 1982, 104, Song, Q.; Chen, J.; Jin, X.; Xi, Z. J. Am. Chem. Soc. 2001, 123,
14 Mg Induced Carbonylation Sprangers, W. J. J. M.; Louw, R. J. Chem. Soc., Perkin Trans , 1895.
15 Al Induced Carbonylation 15 Mason, M. R.; Song, B.; Kirschbaum, K. J. Am. Chem. Soc. 2004, 126,
16 Content 1.Introduction 2.Acid Induced Carbonylation 3.Main Group Metal Induced Carbonylation 4.Transition Metal Induced Carbonylation 5.Conclusion Background Methanol Carbonylation Hydroformylation Double Carbonylation
17 Transition Metal Induced Carbonylation 17 Chiusoli, G. P. Acc. Chem. Res. 1973, 6, 422.
18 Heck, R. F. J. Am. Chem. Soc. 1963, 85, Reppe process Schoenberg, A.; Bartoletti, I.; Heck, R. F. J. Org. Chem. 1974, 39, 23.
19 CO-to-C—X Insertion 19 Heck, R. F. J. Am. Chem. Soc. 1963, 85, Wang, M. D.; Alper, H. J. Am. Chem. Soc. 1992, 114, 7018.
20 Pauson-Khand Reaction Tang, Y.; Deng, L.; Zhang, Y.; Dong, G.; Chen, J.; Yang, Z. Org. Lett. 2005, 7, Paquette, L. A.; Borrelly, S. J. Org. Chem. 1995, 60, 6912.
21 Complicated Carbonylation Negishi, E.-I.; Coperet, C.; Ma, S.; Mita, T.; Sugihara, T.; Tour, J. M. J. Am. Chem. Soc. 1996, 118, Aksin, O.; Dege, N.; Artok, L.; Turkmen, H.; Cetinkaya, B. Chem. Commun. 2006, 3187.
22 Matsuda, T.; Tsuboi, T.; Murakami, M. J. Am. Chem. Soc. 2007, 129, Kramer, J. W.; Joh, D. Y.; Coates, G. W. Org. Lett. 2007, 9, 5581.
23 Wang, Y.; Wang, J.; Su, J.; Huang, F.; Jiao, L.; Liang, Y.; Yang, D.; Zhang, S.; Wender, P. A.; Yu, Z.-X. J. Am. Chem. Soc. 2007, 129, Peng, C.; Cheng, J.; Wang, J. J. Am. Chem. Soc. 2007, 129, 8708.
24 Content 1.Introduction 2.Acid Induced Carbonylation 3.Main Group Metal Induced Carbonylation 4.Transition Metal Induced Carbonylation 5.Conclusion Background Methanol Carbonylation Hydroformylation Double Carbonylation
25 Methanol Carbonylation Forster, D. J. Am. Chem. Soc. 1976, 98, 846. Monsanto process
26 殷元骐 主编, 《羰基合成化学》, p 167.
27 Hydroformylation 27 殷元骐 主编, 《羰基合成化学》, p 4. typical condition: 110~180 ℃, 20~35 MPa double bond isomerization, 110 ℃, p(CO) = 9.0 MPa, 1-pentene vs. 2-pentene, the same n/iso ratio 100 ℃, p(CO) from 0.25 MPa to 9.0 MPa, n/iso from 1.6 to 4.4 high p(CO), high p(H 2 )
28 Jackson, W. R.; Perlmutter, P.; Suh, G.-H. J. Chem. Soc., Chem. Commun. 1987, 40, 129. Couthino, K. J. et. al. J. Chem. Soc., Dalton Trans. 1997, Nair, V. S. et. al. Rec. Adv. Basic Appl. Aspects Industr. Catal. 1998, 113, 529. TPPTS = P(m-C 6 H 4 SO 3 Na) 3 Smith, W. E. et. al. In Catalysis of Organic Reactions; Augustine, R. L., Ed.; Dekker: New York, 1985; p 151.
29 Kranemann, C. L.; Eilbracht, P. Synthesis 1998, 71. Roggenbuck, R.; Eilbracht, P. Tetrahedron Lett. 1999, 40, 7455.
30 Asymmetric Hydroformylation Breit, B. Acc. Chem. Res. 2003, 36, 264. Sakai, N.; Mano, S.; Nozaki, K.; Takaya, H. J. Am. Chem. Soc. 1993, 115, Difficulties : 1. High regioselectivity 2. High enantioselectivity 3. No racemization of aldehyde
31 Diastereoselective Hydroformylation Breit, B.; Zahn, S. K. Angew. Chem., Int. Ed. 1999, 38, 969. Breit, B. Angew. Chem., Int. Ed. 1996, 35, 2835.
32 Double Carbonylation 32 殷元骐 主编, 《羰基合成化学》 (Rhone-Poulenc Company)
33 Cassar, L. Ann. N. Y. Acad. Sci. 1980, 208, 333. Alper, H. Adv. Organomet. Chem. 1981, 19, 183.
34 Kobayashi, T.; Tanaka, M. J. Organomet. Chem. 1982, 233, C64. Ozawa, F.; Soyma, H.; Yamamoto, T.; Yamamoto, A. Tetrahedron Lett. 1982, 23, Ozawa, F.; Sugimoto, T.; Yuasa, Y.; Santra, M.; Yamamoto, T.; Yamamoto, A. Organometallics 1984, 3, 683.
35 Francalanci, F. ; Bencini, E.; Gardano, A.; Vincenti, M.; Foà, M. J. Organomet. Chem. 1986, 301, C27.
36 Content 1.Introduction 2.Acid Induced Carbonylation 3.Main Group Metal Induced Carbonylation 4.Transition Metal Induced Carbonylation 5.Conclusion Background Methanol Carbonylation Hydroformylation Double Carbonylation
37 Conclusion Atom economical Variety, wide application in industry and lab synthesis Ni, Pd, Pt, Co, Rh catalysts, etc Various influencing factors: substrate, catalyst, solvent, pressure, temperature, additive, etc
38 Acknowledgment Thanks for Prof. Yu. Thanks for my group members. Thanks for all the teachers and the students.
39 Note 39
40
41
42