Carbon Monoxide “Insertion” Siyu Ye 2008.1.25. 22 The term “insertion” is used to describe the process whereby an unsaturated moiety, which may or may.

Slides:



Advertisements
Similar presentations
1 Chiral Anion-Mediated Asymmetric Ion Pairing Chemistry Reporter: Zhi-Yong Han
Advertisements

Rhodium Catalyzed Direct C-H Functionalization 陈殿峰
Department of Chemistry Seminar Announcement Date/Time/VenueTitle/Speaker 25 Jan (Tue) 11am – S8 Level 3 Executive Classroom Rh-Catalyzed [(5+2)+1],
1 D. A. Evans’ Asymmetric Synthesis — From 80’s Chiral Auxiliary to 90’s Copper Complexes and Their Applications in Total Synthesis Supervisor: Professor.
Organometallic Catalysts
Catalytic Cross-coupling Reactions with Unactivated Alkyl Electrophiles and Alkyl Nucleophiles Heng Su 04/11/2008 Department of Chemistry Brandeis University.
Reporter: Yu Ting Huang Advising Prof: Ru Jong Jeng 1.
Recent Development for Stereoselective Synthesis of 1,3-Polyol Ye Zhu Prof. Burgess’ Group Aug. 19, 2010.
Alkylation by Asymmetric Phase- Transfer Catalysis 张文全.
Lecture 14 APPLICATIONS IN ORGANIC SYNTHESIS Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
The application of alkaline metal(Ca, Sr, Ba) complex as catalyst in organic chemistry 张文全 1.
From Noble Metal to Nobel Prize: Palladium-Catalyzed Coupling Reactions Giovanni Piersanti 26/10/2011 and 02/11/2011.
--- Dead Ends and Detours Supervisors: Prof. Zhen Yang & Jiahua Chen Reporter: Weiwu Ren The Journey of Azadirachtin.
Enantioselective Synthesis of Biphenols from 1,4-Diketones by Traceless Central-to-axial Chirality Exchange Research By: F Guo, LC Konokol, and RJ Thomson;
Introduction Asymmetric reduction of C=N bonds represents a powerful method for the asymmetric formation of chiral amines. 1 Whilst many methods exist.
Organo-metal cooperative catalysis
1 Single electron transfer reaction involving 1,3-dicarbonyl compounds and its synthetic applications Reporter: Jie Yu Oct. 31, 2009.
Recent Progress in sp 3 C-H Activation Catalyzed by Palladium Bo Yao.
化 学 系 Department of Chemistry Catellani Reaction
何玉萍 Palladium(II)-Catalyzed Alkene Functionalization.
The Career of Chao-Jun Li Guochang B.S. Zhengzhou University 1979 M.S. Chinese Academy of Science 1985 Tak-Hang ChanTak-Hang Chan Ph.D. McGill.
Career-in-review Keiji Maruoka Reporter: Li Chen Supervisor: Prof. David Zhigang Wang
Iron Catalysed Oxidation Reactions. Moftah Darwish and Martin Wills * * Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK. Conclusion:
Hydrogenation Textbook H: Chapter 15.1 – 15.6 Textbook A: Chapter 14.1 – 14.2.
Wangqing Kong Zhu’s group meeting 13 th, Aug, 2015 Intramolecular Asymmetric Heck Reaction and Application in Natural Products Synthesis.
Reactions Catalyzed by Rhenium Carbonyl Complexes 杜宇鎏
1 Cyclopentadienyl-Ruthenium Catalysts --- One Group of Ru(II) Complexes Huijun ZHANG
Buchwald-Hartwig Cross Coupling Reaction Reporter: Ying-Chieh CHAO Lecturer: Professor Guey-Sheng Liou Advisor: Professor Ru-Jong Jeng Data:2013/12/27.
1 CATALYTIC ASYMMETRIC NOZAKI- HIYAMA-KISHI REACTION: ROLE OF ORGANOCHROMIUM COMPOUNDS AND NOVEL SALEN LIGANDS A RKAJYOTI C HAKRABARTY Prof. Uday Maitra’s.
Hydroformylation and oxidation of olefins Textbook H: Chapter 16.6, 17.1 – 17.3 Textbook A: Chapter 16.1 – 16.2, 18.1 – 18.2.
Metal-Mediated Ring Formation The contribution of Paul A. Wender Guillaume Barbe Charette’s Laboratories Université de Montréal October 30 th 2007.
Advances in Metal Mediated Intramolecular Enyne Carbocyclizations Patrick D. Pohlhaus The University of North Carolina at Chapel Hill March 28, 2003.
1 Year 3 CH3E4 notes: Asymmetric Catalysis, Prof Martin Wills You are aware of the importance of chirality. This course will focus on asymmetric.
Ye Zhu 09/02/10 Burgess’s Group Meeting Chiral Ligands On A Spiro Scaffold for Transition-Metal- Catalyzed Asymmetric Reactions Work by Prof. Zhou Qi-Lin.
1 Chiral Phosphoric Acids-Catalyzed Multi-Component Reactions for Synthesis of Structurally Diverse Nitrogenous Compounds Feng Shi Dec. 18th, 2010.
Ru-Catalyzed C-H Activation Wang cheng ming
Supervisor: Yong Huang Reporter: Qian Wang Date: Magical Chiral Spirobiindane Skeletons.
Atom-Economical and Sustainable C-N Bond Formation Reactions from Alcohols and N-Sources via Catalytic Hydrogen Transfer Reactions September 15th, 2015.
Reactions Involve Sulfur Ylides 陈殿峰 陈殿峰
Asymmetric BINOL-Phosphate Derived Brønsted Acids: Development and Catalytic Mechanism Reporter: Song Feifei Supervisor: Prof. Yong Huang
Rhodium-Catalyzed Chemo- and Regioselective Decarboxylative Addition of β- Ketoacids to Allenes: Efficient Construction of Tertiary and Quaternary Carbons.
Redox Neutral Reactions Wang Chao Redox Economy and Redox Neutral Reactions: Angew. Chem. Int. Ed. 2009, 48, 2854 – 2867.
金属催化的氧化反应 CYP 450TauD Acc. Chem. Res. 2007, 40, 522–531.
Light and Palladium Induced Carbonylation Reactions of Alkyl Iodides Mechanism and Development Pusheng Wang Gong Group Meeting April 12 th 2014.
Reporter: Yang Chao Supervisor: Prof. Yong Huang The Transformation of α ‑ Diazocarbonyl Compounds.
Catalytic Synthesis of α,β- Unsaturated Carbonyl Derivatives 陈殿峰
Reporter: Qinglan Liu Supervisor: Prof. Yong Huang
Nicolas Gaeng Group seminar – LSPN – 30/04/15. Structures with multiple rings connected through one atom Nomenclature proposed by Adolf Baeyer in 1900.
Theoretical Study on the Stability of Metallasilabenzyne and Its Isomers Speaker: Xuerui Wang Advisor : Jun Zhu.
Enantioselective Reactions Catalyzed by Iron Complexes Pablo Pérez.
Cinchona Alkaloids : Efficient Bifunctional Organocatalyts in Asymmetric Synthesis Antonin Clemenceau Frontiers in Chemical Synthesis PhD in J. Zhu Group.
Selected examples of Domino Reactions in Total Synthesis Dagoneau Dylan Zhu Group Frontiers in Chemical Synthesis May 22 th, 2014.
Palladium-catalysed reactions involving isocyanides Reporter: Xinzheng Chen Supervisor: Prof. David Zhigang Wang
Photocatalysis based on TiO2
University of Wyoming, Senior Honors Project, December 9, 2016
Major developments in Rh-catalyzed asymmetric 1,4-addition of boron species to enone Group Seminar By Raphaël Beltran.
Efficiency in Synthesis
Presented by Arianne Hunter Sharma Lab Literature Meetings
Transition Metal Catalyzed Amide Bond Formation
Superbisor: Yong Huang
Leah G. Dodson, Michael C. Thompson, J. Mathias Weber
Enantioselective Rh-catalyzed Aldehyde C-H Activation
Baeyer-Villiger Oxidation: Mechanism and Enantioselective Systems
Copper Hydride Catalyzed Hydroamination of Alkenes and Alkynes
• First practical method for asymmetric hydrocyantion of a 1,3-diene
Copper Catalyzed C-N Bond Formation Using O-Acyl Hydroxylamine
Carbon Monoxide “Insertion”
Tunable σ-Accepting, Z-Type Ligands for Organometallic Catalysis
1. Palladium Catalyzed Organic Transformations
Coordination-Driven Self-Assembly of Metallodendrimers Possessing Well-Defined and Controllable Cavities as Cores Hai-Bo Yang,* Adam M. Hawkridge, Songping.
Presentation transcript:

Carbon Monoxide “Insertion” Siyu Ye

22 The term “insertion” is used to describe the process whereby an unsaturated moiety, which may or may not be coordinated to the metal initially, becomes bonded to the metal and to a saturated ligand (which was initially attached to the metal center). Anderson, G. K.; Cross, R. J. Acc. Chem. Res. 1984,17, 67.

33 Content 1.Introduction 2.Acid Induced Carbonylation 3.Main Group Metal Induced Carbonylation 4.Transition Metal Induced Carbonylation 5.Conclusion  Background  Methanol Carbonylation  Hydroformylation  Double Carbonylation

44 Content 1.Introduction 2.Acid Induced Carbonylation 3.Main Group Metal Induced Carbonylation 4.Transition Metal Induced Carbonylation 5.Conclusion  Background  Methanol Carbonylation  Hydroformylation  Double Carbonylation

5 The CO Molecule  C + O -, electronegativity  C - O +, a low dipole moment of D Molecular Orbital of Carbon Monoxide Henrici-Olivé, G.; Olivé, S. The Chemistry of the Catalyzed Hydrogenation of Carbon Monoxide; Springer-Verlag: Berlin, Heidelberg, New York, Tokyo, 1984; p LUMO HOMO

6 Migratory Insertion Which is more appropriate?

77 Calderazzo, F. Angew. Chem., Int. Ed. 1977, 16, 299. Brunner, H.; Vogt, H. Angew. Chem., Int. Ed. 1981, 20, 405. alkyl migration CO migration

88 Influence Factors Cavell, K. J. Coord. Chem. Rev. 1996, 155, 209.  cis-(CO/Me)  trans-(P/Me), ligand with a large trans influence  θ, angle of L-M-X  partial negative charge at alkyl group  partial positive charge at CO

9 Absence of Acyl-to-CO Migration  Ni-C (acetyl) bond (184 pm) < Ni-C σ bond (194 pm)  Ti-C (acetyl) bond (207 pm) < Ti-C σ bond (214 pm)  M-C (acetyl) bond, a partial double bond 9 Henrici-Olivé, G.; Olivé, S. The Chemistry of the Catalyzed Hydrogenation of Carbon Monoxide; Springer-Verlag: Berlin, Heidelberg, New York, Tokyo, 1984; p 79.

10 Content 1.Introduction 2.Acid Induced Carbonylation 3.Main Group Metal Induced Carbonylation 4.Transition Metal Induced Carbonylation 5.Conclusion  Background  Methanol Carbonylation  Hydroformylation  Double Carbonylation

11 Koch carbonylation Farcasiu, D.; Schlosberg, R. H. J. Org. Chem. 1982, 47, 151. Acid Induced Carbonylation

12 Content 1.Introduction 2.Acid Induced Carbonylation 3.Main Group Metal Induced Carbonylation 4.Transition Metal Induced Carbonylation 5.Conclusion  Background  Methanol Carbonylation  Hydroformylation  Double Carbonylation

13 Li Induced Carbonylation Seyferth, D.; Weinstein, R. M. J. Am. Chem. Soc. 1982, 104, Song, Q.; Chen, J.; Jin, X.; Xi, Z. J. Am. Chem. Soc. 2001, 123,

14 Mg Induced Carbonylation Sprangers, W. J. J. M.; Louw, R. J. Chem. Soc., Perkin Trans , 1895.

15 Al Induced Carbonylation 15 Mason, M. R.; Song, B.; Kirschbaum, K. J. Am. Chem. Soc. 2004, 126,

16 Content 1.Introduction 2.Acid Induced Carbonylation 3.Main Group Metal Induced Carbonylation 4.Transition Metal Induced Carbonylation 5.Conclusion  Background  Methanol Carbonylation  Hydroformylation  Double Carbonylation

17 Transition Metal Induced Carbonylation 17 Chiusoli, G. P. Acc. Chem. Res. 1973, 6, 422.

18 Heck, R. F. J. Am. Chem. Soc. 1963, 85, Reppe process Schoenberg, A.; Bartoletti, I.; Heck, R. F. J. Org. Chem. 1974, 39, 23.

19 CO-to-C—X Insertion 19 Heck, R. F. J. Am. Chem. Soc. 1963, 85, Wang, M. D.; Alper, H. J. Am. Chem. Soc. 1992, 114, 7018.

20 Pauson-Khand Reaction Tang, Y.; Deng, L.; Zhang, Y.; Dong, G.; Chen, J.; Yang, Z. Org. Lett. 2005, 7, Paquette, L. A.; Borrelly, S. J. Org. Chem. 1995, 60, 6912.

21 Complicated Carbonylation Negishi, E.-I.; Coperet, C.; Ma, S.; Mita, T.; Sugihara, T.; Tour, J. M. J. Am. Chem. Soc. 1996, 118, Aksin, O.; Dege, N.; Artok, L.; Turkmen, H.; Cetinkaya, B. Chem. Commun. 2006, 3187.

22 Matsuda, T.; Tsuboi, T.; Murakami, M. J. Am. Chem. Soc. 2007, 129, Kramer, J. W.; Joh, D. Y.; Coates, G. W. Org. Lett. 2007, 9, 5581.

23 Wang, Y.; Wang, J.; Su, J.; Huang, F.; Jiao, L.; Liang, Y.; Yang, D.; Zhang, S.; Wender, P. A.; Yu, Z.-X. J. Am. Chem. Soc. 2007, 129, Peng, C.; Cheng, J.; Wang, J. J. Am. Chem. Soc. 2007, 129, 8708.

24 Content 1.Introduction 2.Acid Induced Carbonylation 3.Main Group Metal Induced Carbonylation 4.Transition Metal Induced Carbonylation 5.Conclusion  Background  Methanol Carbonylation  Hydroformylation  Double Carbonylation

25 Methanol Carbonylation Forster, D. J. Am. Chem. Soc. 1976, 98, 846. Monsanto process

26 殷元骐 主编, 《羰基合成化学》, p 167.

27 Hydroformylation 27 殷元骐 主编, 《羰基合成化学》, p 4.  typical condition: 110~180 ℃, 20~35 MPa  double bond isomerization, 110 ℃, p(CO) = 9.0 MPa, 1-pentene vs. 2-pentene, the same n/iso ratio  100 ℃, p(CO) from 0.25 MPa to 9.0 MPa, n/iso from 1.6 to 4.4  high p(CO), high p(H 2 )

28 Jackson, W. R.; Perlmutter, P.; Suh, G.-H. J. Chem. Soc., Chem. Commun. 1987, 40, 129. Couthino, K. J. et. al. J. Chem. Soc., Dalton Trans. 1997, Nair, V. S. et. al. Rec. Adv. Basic Appl. Aspects Industr. Catal. 1998, 113, 529. TPPTS = P(m-C 6 H 4 SO 3 Na) 3 Smith, W. E. et. al. In Catalysis of Organic Reactions; Augustine, R. L., Ed.; Dekker: New York, 1985; p 151.

29 Kranemann, C. L.; Eilbracht, P. Synthesis 1998, 71. Roggenbuck, R.; Eilbracht, P. Tetrahedron Lett. 1999, 40, 7455.

30 Asymmetric Hydroformylation Breit, B. Acc. Chem. Res. 2003, 36, 264. Sakai, N.; Mano, S.; Nozaki, K.; Takaya, H. J. Am. Chem. Soc. 1993, 115, Difficulties : 1. High regioselectivity 2. High enantioselectivity 3. No racemization of aldehyde

31 Diastereoselective Hydroformylation Breit, B.; Zahn, S. K. Angew. Chem., Int. Ed. 1999, 38, 969. Breit, B. Angew. Chem., Int. Ed. 1996, 35, 2835.

32 Double Carbonylation 32 殷元骐 主编, 《羰基合成化学》 (Rhone-Poulenc Company)

33 Cassar, L. Ann. N. Y. Acad. Sci. 1980, 208, 333. Alper, H. Adv. Organomet. Chem. 1981, 19, 183.

34 Kobayashi, T.; Tanaka, M. J. Organomet. Chem. 1982, 233, C64. Ozawa, F.; Soyma, H.; Yamamoto, T.; Yamamoto, A. Tetrahedron Lett. 1982, 23, Ozawa, F.; Sugimoto, T.; Yuasa, Y.; Santra, M.; Yamamoto, T.; Yamamoto, A. Organometallics 1984, 3, 683.

35 Francalanci, F. ; Bencini, E.; Gardano, A.; Vincenti, M.; Foà, M. J. Organomet. Chem. 1986, 301, C27.

36 Content 1.Introduction 2.Acid Induced Carbonylation 3.Main Group Metal Induced Carbonylation 4.Transition Metal Induced Carbonylation 5.Conclusion  Background  Methanol Carbonylation  Hydroformylation  Double Carbonylation

37 Conclusion Atom economical Variety, wide application in industry and lab synthesis Ni, Pd, Pt, Co, Rh catalysts, etc Various influencing factors: substrate, catalyst, solvent, pressure, temperature, additive, etc

38 Acknowledgment Thanks for Prof. Yu. Thanks for my group members. Thanks for all the teachers and the students.

39 Note 39

40

41

42