ASSESSMENT OF SPECTROSCOPIC DATABASE ARCHIVES FOR PLANETARY ATMOSPHERE STUDIES N. Jacquinet-Husson, N.A. Scott, A. Ch é din, R. Armante Laboratoire de.

Slides:



Advertisements
Similar presentations
SOIR Data Workshop: Spectroscopy SOIR Spectroscopy A.C. Vandaele, R. Drummond, A. Mahieux, S. Robert, V. Wilquet SOIR Belgian Institute for Space.
Advertisements

The HITRAN Molecular Database
D. Chris Benner and V Malathy Devi College of William and Mary Charles E. Miller, Linda R. Brown and Robert A. Toth Jet Propulsion Laboratory Self- and.
Spectral shapes modeling and remote sensing of greenhouse gases. Toward the OCO and GOSAT experiments and future HITRAN issues.
High sensitivity CRDS of the a 1 ∆ g ←X 3 Σ − g band of oxygen near 1.27 μm: magnetic dipole and electric quadrupole transitions in different bands of.
Revision of Spectral Parameters for the B- and γ-Bands of Oxygen and their Validation using Atmospheric Spectra with the Sun as Source 66 th International.
Victor Gorshelev, A. Serdyuchenko, M. Buchwitz, J. Burrows, University of Bremen, Germany; N. Humpage, J. Remedios, University of Leicester, UK IMPROVED.
Denis Plutov Dennis Killinger Department of Physics
Toward a global model of low-lying vibrational states of methyl cyanide, CH 3 CN: the v 4 = 1 state at 920 cm –1 and its interactions with nearby states.
THE PROGRAM COMPLEX FOR COMPUTATION OF SPECTROSCOPIC CHARACTERISTICS OF ATOMIC AND MOLECULAR GASES IN UV, VISIBLE AND IR SPECTRAL RANGE FOR A WIDE RANGE.
Spectroscopy for Hot Super- Earth Exoplanets P. F. Bernath and M. Dulick Department of Chemistry & Biochemistry Old Dominion University, Norfolk, VA.
9th HITRAN conference, June 2006, Cambridge, MA, USA ASSESSMENT OF THE GEISA AND GEISA/IASI SPECTROSCOPIC DATA QUALITY: trough comparisons with other.
ACE Linelist Needs for the Atmospheric Chemistry Experiment Chris Boone and Peter Bernath Univ. of Waterloo, Waterloo, Ontario, Canada HITRAN 2006 Conference.
The Water Molecule: Line Position and Line Intensity Analyses up to the Second Triad L. H. Coudert, a G. Wagner, b M. Birk, b and J.-M. Flaud a a Laboratoire.
* The number of transitions listed in this column are for the equivalent number of isotopologues and spectral range consistent with HITEMP2010 Comparison.
1 Laurence S. Rothman Iouli E. Gordon Harvard-Smithsonian Center for Astrophysics Atomic and Molecular Physics Division Symposium on Laboratory Astrophysics.
ACE Spectroscopic Issues for the Atmospheric Chemistry Experiment (ACE) Chris Boone, Kaley Walker, and Peter Bernath HITRAN meeting June, 2008.
PRESSURE BROADENING AND SHIFT COEFFICIENTS FOR THE BAND OF 12 C 16 O 2 NEAR 6348 cm -1 D. CHRIS BENNER and V MALATHY DEVI Department of Physics,
Some Details of the Upcoming HITRAN Updates for the New Edition of 2008 Laurence S. Rothman, Iouli E. Gordon Harvard-Smithsonian Center for Astrophysics,
 ( ) 0+   ( ) 0–  4 1 Results at 2.5 microns 2 +( ) 1 II (
9th HITRAN Database & Atmospheric Spectroscopy Applications conferences Formaldehyde broadening coefficients Agnès Perrin Laboratoire Interuniversitaire.
Laser spectroscopic study of ozone in the 100←000 band for the SWIFT instrument M. Guinet, C. Janssen, D. Mondelain, C. Camy-Peyret LPMAA, CNRS- UPMC (France)
Jet Propulsion Laboratory California Institute of Technology 1 V-1 11 th HITRAN Conference, Cambridge, MA, June 16-18, 2010 The importance of being earnest.
SPECTRAL LINE PARAMETERS FOR THE 9 BAND OF ETHANE Malathy Devi & Chris Benner, W&M Rinsland & Smith, NASA Langley Bob Sams & Tom Blake, PNNL Jean-Marie.
1 Water spectroscopy with a Distributed Information System A.Z.Fazliev 1, A.G.Császár 2, J.Tennyson 3 1. Institute of Atmospheric Optics SB.
Molecular Databases: Evolution and Revolution Laurence S. Rothman Iouli E. Gordon Harvard-Smithsonian Center for Astrophysics Atomic and Molecular Physics.
SPECTRA, an Internet Accessible Information System for Spectroscopy of Atmospheric Gases Semen MIKHAILENKO, Yurii BABIKOV, Vladimir.
THE GEISA DATABASE OF INFRARED MOLECULAR PARAMETERS FOR PLANETARY ATMOSPHERE STUDIES N. Jacquinet-Husson (1), V. Capelle (1), L. Crépeau (1), R. Armante.
LINE PARAMETERS OF WATER VAPOR IN THE NEAR- AND MID-INFRARED REGIONS DETERMINED USING TUNEABLE LASER SPECTROSCOPY Nofal IBRAHIM, Pascale CHELIN, Johannes.
Spectroscopic Parameters Molecules in the atmospheres
INTRODUCTION TO GEOPHYSICS AND SPACE SCIENCE Günter Kargl Space Research Institute Austrian Academy of Sciences WS 2013.
CDSD-4000: high-temperature spectroscopic CO 2 databank S.A. Tashkun, V.I. Perevalov Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute of Atmospheric.
Jet Propulsion Laboratory California Institute of Technology The College of William and MaryUniversity of Lethbridge.
THE GEISA 2008 EDITION : PRESENTATION AND EVALUATION FOR PLANETARY ATMOSPHERE STUDIES N. Jacquinet-Husson (1), V. Capelle (1), L. Crépeau (1), N.A. Scott.
Self- and Air-Broadening, Shifts, and Line Mixing in the ν 2 Band of CH 4 M. A. H. Smith 1, D. Chris Benner 2, V. Malathy Devi 2, and A. Predoi-Cross 3.
Self- and air-broadened line shape parameters in the band of 12 CH 4 : cm -1 V. Malathy Devi Department of Physics The College of William.
THE GEISA DATABASE 2009 EDITION: A TOOL FOR HYPERSPECTRAL EARTH TROPOSPHERIC SATELLITE OBSERVATIONS STUDIES N. Jacquinet-Husson, L. Crépeau, R. Armante,
New H 2 16 O measurements of line intensities around 1300 cm -1 and 8800 cm - 1 Oudot Charlotte Groupe de Spectrométrie Moléculaire et Atmosphérique Reims,
Hot summer of HITRAN2008 I. E. Gordon L. S. Rothman.
Measurements of N 2 - and O 2 -pressure broadening and pressure-induced shifts for 16 O 12 C 32 S transitions in the 3 band M.A. Koshelev and M.Yu. Tretyakov.
Methyl Bromide : Spectroscopic line parameters in the 7- and 10-μm region D. Jacquemart 1, N. Lacome 1, F. Kwabia-Tchana 1, I. Kleiner 2 1 Laboratoire.
Predicting half-widths and line shifts for water vapor transitions on the HITEMP database Robert R. Gamache a, Laurence S. Rothman b, and Iouli E. Gordon.
1. Databases of Infrared Molecular Parameters for Astronomy 0.7 to 1000 μm (14000 to 10 cm -1 ) Linda R. Brown Jet Propulsion Laboratory California Institute.
Methyl Bromide : Spectroscopic line parameters in the 10-μm region D. Jacquemart 1, N. Lacome 1, F. Kwabia-Tchana 1, I. Kleiner 2 1 Laboratoire de Dynamique,
Evaluation of the Experimental and Theoretical Intensities of Water- Vapor Lines in the 2 µm Region Using Spectra from the Solar- Pointing FTS Iouli Gordon,
MICROWAVE SPECTRUM OF 12 C 16 O S.A. TASHKUN and S.N. MIKHAILENKO, Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute of Atmospheric Optics, Zuev.
© Crown copyright Met Office Radiation scheme for Earth’s atmosphere …and what might not work for exoplanets James Manners 6/12/11.
Line list of HD 18 O rotation-vibration transitions for atmospheric applications Semen MIKHAILENKO, Olga NAUMENKO, and Sergei TASHKUN Laboratory of Theoretical.
A new spectroscopic observatory in Créteil to measure atmospheric trace gases in solar occultation geometry C. Viatte, P. Chelin, M. Eremenko, C. Keim,
Solar System observations with APEX Observatoire de Paris, France Emmanuel Lellouch.
HITRAN in the XXI th Century: Beyond Voigt and Beyond Earth L.S. Rothman, a I.E. Gordon, a C. Hill, a,b R.V. Kochanov, a,c P. Wcisło, a,d J. Wilzewski.
The 11 th HITRAN Database Conference June 16-18, 2010 Jacquinet-Husson N., Crépeau L., Capelle V., Scott N.A., Armante R., Boutammine C., Chédin A. Laboratoire.
69th Meeting - Champaign-Urbana, Illinois, 2014 FE11 1/12 JPL Progress Report Keeyoon Sung, Geoffrey C. Toon, Linda R. Brown Jet Propulsion Laboratory,
SELF- AND CO 2 -BROADENED LINE SHAPE PARAMETERS FOR THE 2 AND 3 BANDS OF HDO V. MALATHY DEVI, D. CHRIS BENNER, Department of Physics, College of William.
Calculation of lineshape parameters for self- broadening of water vapor transitions via complex Robert-Bonamy theory Bobby Antony, Steven Neshyba* & Robert.
TEMPERATURE DEPENDENCES OF AIR-BROADENING AND SHIFT PARAMETERS IN THE ν 3 BAND OF OZONE M. A. H. SMITH NASA Langley Research Center, Hampton, VA
Line Positions and Intensities for the ν 12 Band of 13 C 12 CH 6 V. Malathy Devi 1, D. Chris Benner 1, Keeyoon Sung 2, Timothy J. Crawford 2, Arlan W.
EXPERIMENTAL TRANSMISSION SPECTRA OF HOT AMMONIA IN THE INFRARED Monday, June 22 nd 2015 ISMS 70 th Meeting Champaign, Illinois EXPERIMENTAL TRANSMISSION.
1 Laurence S. Rothman Harvard-Smithsonian Center for Astrophysics Atomic and Molecular Physics Division Cambridge MA 02138, USA 60 th OSU Symposium on.
Atmospheric Chemistry Experiment (ACE): Organic Molecules from Orbit Peter Bernath Department of Chemistry, University of York Heslington, York, UK.
A dynamic database of molecular model spectra
EXPERIMENTAL LINE LISTS OF HOT METHANE Image credit: Mark Garlick MONDAY 22 nd JUNE 2015 ROBERT J. HARGREAVES MICHAEL DULICK PETER F.
Infrared spectroscopy of planetological molecules Isabelle Kleiner Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), Créteil, France.
HITRAN2016 DATABASE PART II: OVERVIEW OF THE SPECTROSCOPIC PARAMETERS OF THE TRACE GASES Good Morning everyone. It’s my honor to be here and I would like.
HITRANonline: A New Structure and Interface for HITRAN
ATMOSPHERIC CHEMISTRY EXPERIMENT (ACE) Some recent highlights
Nofal IBRAHIM, Pascale CHELIN, Johannes ORPHAL
Andy Wong Robert J. Hargreaves Peter F. Bernath Michaël Rey
EVALUATION OF GEISA CONTENTS
GhoSST (formerly STSP)
Presentation transcript:

ASSESSMENT OF SPECTROSCOPIC DATABASE ARCHIVES FOR PLANETARY ATMOSPHERE STUDIES N. Jacquinet-Husson, N.A. Scott, A. Ch é din, R. Armante Laboratoire de M é t é orologie Dynamique, Ecole Polytechnique, Palaiseau, France Phone CLASSES OF SOLAR SYSTEM MAIN COMPONENTS (non exhaustive lists) ATMOSPHERES OBJECT H 2 -He atmospheres JUPITER H 2, He, CH 4, C 2 H 2, C 2 H 6, C 2 H 4, H 2 O, C 4 H 2, C 6 H 6 of the giant planets C 6 H 6, C 3 H 4, NH 3, PH 3, GeH 4, CO, AsH 3, CO 2,… SATURN H 2, He, CH 4, C 2 H 2, C 2 H 6, C 3 H 4,CH 3, C 3 H 8, NH 3, PH 3, GeH 4, H 2 O, AsH 3,..… URANUS H 2, He, CH 4, NEPTUNE H 2, He, CH 4, C 2 H 4, C 2 H 2, H 2 S(?), NH 3 (?), CH 3, ……………… Terrestrial CO 2 VENUS CO 2, N 2, SO 2, H 2 SO 4, CO, O, N 2, O 3, atmospheres HCl, HF, Ne, H 2 S, OCS, H, H 2, He FeCl 3 (?), H 2 O, O 2, Cl, ClO, ClO 2, COCl,.. MARS CO 2, N 2, Ar, O 2, H 2 O, CO, H 2 O, O 3, OH, HO 2, H, D, HDO, Ar, Ne, Kr, Xe, … N 2 atmospheres TITAN N 2, CH 4, O 2, Ar, CO, C 2 H 6, C 3 H 8, H 2 O, CO, CO 2, C 2 H 4, NH 3, HCN, C 2 N 2, HC 3 N, CH 3 CN, C 4 H 2, CH 2 CCH 2, …. EARTH N 2, O 2, Ar, H 2 O, CO 2, O 3, N 2 O, CH 4, NO, SO 2, NO 2, HNO 3, OCS, NH 3, HCN, H 2 CO, … PLUTO N 2, CO, CH 4, ….. TRITON N 2, CO, CH 4, Volcanic IO SO 2, … Exospheres MOON Na, K, ….. MERCURY Na, K, …… Comae COMETS H 2 O, CH 4, CO, CO 2, CH 3 OH, ….. COMPOSITION OF THE ATMOSPHERES AROUND SOLAR SYSTEM OBJECTS SPECTROSCOPIC DATABASES FOR ATMOSPHERIC REMOTE SENSING AND INTERSTELLAR AND CIRCUMSTELLAR STUDIES CURRENT MAINLY INFRARED PUBLIC WEB ACCESSIBLE DATABASES Database Summarized Contents Spectral Range # Species # Isotopes # Transitions (cm -1 ) (individual lines) HITRAN-04 (High Resolution Transmission) 3 components - Individual line parameters 0.0 to 25, ,734,469 (terrestrial) - Absorption cross-sections IR et UV - Refractive indices of aerosols GEISA-03 3 sub-databases (Gestion et Etude des Informations - Individual line parameters 0.0 to 35, ,668,371 Spectroscopiques Atmosphériques) (terrestrial and planetary) - Absorption cross-sections IR et UV - Aerosols CURRENT MAINLY MICROWAVE PUBLIC WEB ACCESSIBLE DATABASES Database Summarized Contents Spectral Range # species # transitions (cm -1 ) JPL Catalog - Molecules 0 to ,664,111 (Jet Propulsion Laboratory Catalog) - Radicals - Atoms (terrestrial and astrophysics) CDMS (Cologne Database for Molecular - Molecules 0 to ~ 2,000,000 Spectroscopy) - Radicals - Atoms (astrophysics) OTHER SPECTROSCOPIC DATABASES OF INTEREST MAINLY INFRARED * HITEMP (High temperature database of HITRAN) * MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) * ATMOS (Atmospheric Trace Molecule Spectroscopy) * SAO (The Smithonian Astrophysical Observatory Database SAO92) MAINLY MICROWAWE * NIST (National Institute of Standard and Technology Physical Reference data) MERGING SPECTRAL DATA CATALOGS ? BEAMCAT : The Bernese atmospheric multiple catalog access tool: a tool for users of popular spectral catalogs Concept of meta catalog: * provides links between identical quantum mechanical transitions listed in different catalogs, unlike a merged spectral line catalog ; * does not contain any spectral parameters H 2 O CO O N 2 O CO CH O NO SO NO NH PH HNO OH HF HCl HBr HI ClO OCS H 2 CO O HITRAN specific 2 NO+ HITRAN specific 1206 C 2 H CH 3 D isotope of CH4 C 2 H C 2 H GeH GEISA specific HCN C 3 H GEISA specific C 2 N GEISA specific C 4 H GEISA specific HC 3 N 2027 GEISA specific HOCl N CH 3 Cl H 2 O H2S HCOOH COF SF Supl. C 3 H GEISA specific HO ClONO Supl. HOBr HITRAN specific 4358 CH3OH HITRAN specific Molecule GEISA-03 HITRAN-04 # lines # lines # lines #l ines SUMMARIZED CONTENTS OF HITRAN-04 AND GEISA-03 INDIVIDUAL LINE LISTS Supl.: Molecular species relegated to the supplemental directory of HITRAN REFERENCES L.S. Rothman et al. JQSRT 96 (2005) N. Jacquinet-Husson et al. JQSRT 95 (2005) and Proc. of the 13th international study conference (ITSC-13), Sainte-Ad è le, Canada, 28 Oct-4 Nov. 2003)

CONCLUDING COMMENTS STATUS OF MOLECULES OF INTEREST FOR EARTH RADIATIVE TRANSFER MODELLING METOP/IASI Project (600 – 3000 cm -1 ) No unique spectroscopic database for Astronomy Simultaneous use of different databases necessary Lack of validation for many archived data Important missing information in all spectral ranges Most recent information often not included Many private undocumented data collections used Initiatives of merged spectral data catalogs underway Parameter ID Meaning, Units, Comments M Molecule number [ HITRAN chronological assignment] I Isotopologue number [Ordering within a molecule by terrestrial abundance] ν Vacuum wavenumber cm -1 S Intensity cm -1 / (molecule·cm -2 ) at standard 296K A Einstein A-coefficient s -1 γ air Air-broadened half-width (HWHM) at 296K cm -1 atm -1 γ self Self-broadened half-width (HWHM) at 296K cm -1 atm -1 E’’ Lower-state energy cm -1 n air Temperature-dependence exponent for γair unitless [γ air (T) = γ air (T 0 )×(T 0 /T) nair ] δ air Air pressure-induced line shift cm -1 atm -1 at 296K V’ Upper-state “global” quanta V” Lower-state “global” quanta Q’ Upper-state “local” quanta Q’’ Lower-state “local” quanta I err Uncertainty indices [Accuracy for 6 critical parameters (ν, S, γ air, γ self, n air, δ air )] I ref Reference indices [References for 6 critical parameters (ν, S, γ air, γ self, n air, δ air )] * Flag Availability of program and data for the case of line mixing g’ Statistical weight of the upper state g’’ Statistical weight of the lower state Parameter ID Meaning, Units, Comments A Wavenumber (cm -1 ) of the line B Intensity of the line in (cm -1 /(molecule.cm -2 ) at 296K C Air broadening pressure halfwidth (HWHM) (cm -1 atm- 1 ) at 296K D Energy of the lower transition level (cm -1 ) E Transition quantum identifications for the lower and upper state of the transition F Temperature dependence coefficient n of the air broadening halfwidth G Identification code for isotope as in GEISA I Identification code for molecule as in GEISA J Internal GEISA code for the data identification (For inter-compatibility with HITRAN) K Molecule number as in HITRAN L Isotope number (1=most abundant. 2= second…etc) as in HITRAN M Transition probability (in debye 2 ) N Self broadening pressure halfwidth (HWHM) (cm -1 atm -1 ) at 296K (for water) O Air pressure shift of the line transition (cm -1 atm -1 ) at 296K P Accuracy indices for frequency, intensity and halfwidth Q Indices for lookup of references for frequency, intensity and halfwidth R Temperature dependence coefficient n of the air pressure shift A‘ Estimated accuracy (cm -1 ) on the line position B‘ Estimated accuracy on the intensity of the line in (cm -1 /(molecule.cm -2 ) C‘ Estimated accuracy on the air collision halfwidth (HWHM) (cm -1 atm -1 ) F‘ Estimated accuracy on the temperature dependence coefficient n of the air broadening halfwidth O‘ Estimated accuracy on the air pressure shift of the line transition (cm -1 atm -1 ) at 296K R‘ Estimated accuracy on the temperature dependence coefficient n of the air pressure shift (Especially dedicated to Water Molecule) N‘ Estimated accuracy on the self broadened (HWHM) (cm -1 atm -1 ) at 296K (for water) S Temperature dependence coefficient n of the self broadening halfwidth (for water) S‘ Estimated accuracy on the temperature dependence coefficient n of the self broadening halfwidth (for water) T Self pressure shift of the line transition (cm -1 atm -1 ) at 296K (for water) T‘ Estimated accuracy on the self pressure shift of the line transition (cm -1 atm -1 ) at 296K (for water) U Temperature dependence coefficient n of the self pressure shift (for water) U‘ Estimated accuracy on the temperature dependence coefficient n of the self pressure shift (for water) PARAMETERS FOR LINE-BY-LINE TRANSITIONS CHARACTERIZATION IN HITRAN-04 IN GEISA-03 Positions cm -1 Pressure-induced shifts cm -1 Line intensities1 to 10% Lower states energies  ½% Pressure-broadening widths 1 to 20 % Temperature dependence of widths10 to 40% From Linda R. Brown ACCURACIES REQUIRED FOR MANY APPLICATIONS IN ASTRONOMY (0.7 to 1000 μm to 10 cm -1 ) Wavenumbers: – 1.0 cm -1 Pressure-induced shifts: cm -1 Line intensities: 1 to 10% Lower states energies:  ½% Pressure-broadening widths: 1 to 20 % Temperature dependence of widths: 10 to 40% From Linda R. Brown ACCURACIES REQUIRED FOR MANY APPLICATIONS IN ASTRONOMIE (0.7 to 1000 μm) SPECTROSCOPIE AND PLANETARY ATMOSPHERES STUDIES Laboratory C 2 H 2 spectrum (Mandin and Dana, 1999) Infrared emission of URANUS stratosphere showing C 2 H 2 lines From C. Camy-Peyret MOLECULELINE POSITIONS LINE INTENSITIES LINE BROADENING LINE MIXING CONTINUUMCROSS- SECTIONS WATER1111 CO 2 YY2Y O3O3 311 CH COYYY N2ON2O??22 HNO O 2 & N 2 collision Induced spectrum Y CFC’s, HCFC’s, N 2 O 5 Y From IASI (Infrared Atmospheric Sounding Interferometer) 14th Working group Meeting (METOP: Meteorological Operational Satellite) 1: parameters that need to be improved; 2: 2nd priority; 3: 3d priority; Y: no problems clearly identified; ?: the databases have to be checked I INFRARED LABORATORY SPECTROSCOPY: EXAMPLES OF RECENT AND PRESENT EFFORTS H2O: L.H. Coudert et al. Extensive experimental and theoretical investigation LISA, LPMAA L.R. Brown et al. Line mixing at 6 μm JPL R.A. Toth et al. Air broadening as a function of T (696 – 2163 cm -1 ) CO2: R.A. Toth et al. Self-broadened widths and shifts JPL Line strengths (4550 – 7000 cm -1 ) CH4: A. Predoi-Cross et al. Self broadening & pressure shifting (4100 – 4635 cm -1 ) Lethbridge Univ. Air-broadening coefficients (widths and shifts) (4100 – 4635 cm -1 ) A. Nikitin et al. Line strengths (4100 – 4800) cm -1 L.R. Brown et al. Line strengths and self broadening JPL CH3D: A. Nikitin et al. Analysis (3300 – 3700 cm -1 ) LTS C2H4 : V. Morozhenko et al. Band at 10 μm Inst. Of Semiconductor Phys. Ukraine C2H2: Mandin et al. at 2600, 4000, 4600, 5000, 9600 cm -1 LPMAA NH3: I. Kleiner et al. For Jupiter Atmosphere LISA PH3: I. Kleiner et al. For Saturn Atmosphere LISA CH3CN: I. Kleiner et al. For Titan Atmosphere LISA Collisional absorption line-shapes: J.M. Hartmann for N 2 O, CO 2, CH 4, O 2 LISA SF 5 CF 3: C.P. Rinsland 520 – 6500 cm -1 NASA/LANGLEY