TEMPO Simulation and Retrieval Tools and Algorithm Testing at SAO Xiong Liu 3 rd TEMPO Science Team Meeting Huntsville, Al, May 27,

Slides:



Advertisements
Similar presentations
GEOS-5 Simulations of Aerosol Index and Aerosol Absorption Optical Depth with Comparison to OMI retrievals. V. Buchard, A. da Silva, P. Colarco, R. Spurr.
Advertisements

Quantitative retrievals of NO 2 from GOME Lara Gunn 1, Martyn Chipperfield 1, Richard Siddans 2 and Brian Kerridge 2 School of Earth and Environment Institute.
Envisat Symposium, April 23 – 27, 2007, Montreux bremen.de SADDU Meeting, June 2008, IUP-Bremen Cloud sensitivity studies.
GEO-CAPE COMMUNITY WORKSHOP MAY Vijay Natraj 1, Xiong Liu 2, Susan Kulawik 1, Kelly Chance 2, Robert Chatfield 3, David P. Edwards 4, Annmarie.
Global Monitoring of Tropospheric Pollution from Geostationary Orbit Kelly Chance Harvard-Smithsonian Center for Astrophysics.
Institut für Umweltphysik/Fernerkundung Physik/Elektrotechnik Fachbereich 1 Retrieval of SCIAMACHY limb measurements: First Results A. Rozanov, V. Rozanov,
1 Ozone Profile Retrieval from SBUV/2 Sweep Mode Data---Preliminary Results Xiong Liu, Kelly Chance Harvard-Smithsonian Center for Astrophysics Matthew.
CPI International UV/Vis Limb Workshop Bremen, April Development of Generalized Limb Scattering Retrieval Algorithms Jerry Lumpe & Ed Cólon.
Xiong Liu Harvard-Smithsonian Center for Astrophysics December 20, 2004 Direct Tropospheric Ozone Retrieval from GOME.
Xiong Liu Harvard-Smithsonian Center for Astrophysics Kelly Chance, Christopher Sioris, Robert Spurr, Thomas Kurosu, Randall Martin,
Extracting Atmospheric and Surface Information from AVIRIS Spectra Vijay Natraj, Daniel Feldman, Xun Jiang, Jack Margolis and Yuk Yung California Institute.
Page 1 1 of 19, OCO STM 2006 OCO Science Team Meeting March 22, 2006 Vijay Natraj (Caltech), Hartmut Bösch (JPL), Yuk Yung (Caltech) A Two Orders of Scattering.
Page 1 1 of 100, L2 Peer Review, 3/24/2006 Level 2 Algorithm Peer Review Polarization Vijay Natraj.
A 21 F A 21 F Parameterization of Aerosol and Cirrus Cloud Effects on Reflected Sunlight Spectra Measured From Space: Application of the.
Xiong Liu, Kelly Chance, and Thomas Kurosu Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA The 36 th COSPAR Scientific Assembly Beijing,
Page 1 1 of 21, 28th Review of Atmospheric Transmission Models, 6/14/2006 A Two Orders of Scattering Approach to Account for Polarization in Near Infrared.
Page 1 1 of 20, EGU General Assembly, Apr 21, 2009 Vijay Natraj (Caltech), Hartmut Bösch (University of Leicester), Rob Spurr (RT Solutions), Yuk Yung.
1 Global Observations of Sulfur Dioxide from GOME Xiong Liu 1, Kelly Chance 1, Neil Moore 2, Randall V. Martin 1,2, and Dylan Jones 3 1 Harvard-Smithsonian.
Development of GEMS Cloud Data Processing Algorithm Yong-Sang Choi 1, Bo-Ram Kim 1, Heeje Cho 2, Myong-Hwan Ahn 1 (Former COMS PI), and Jhoon Kim 3 (GEMS.
Status S5p TROPOMI Pepijn Veefkind.
M. Van Roozendael, AMFIC Final Meeting, 23 Oct 2009, Beijing, China1 MAXDOAS measurements in Beijing M. Van Roozendael 1, K. Clémer 1, C. Fayt 1, C. Hermans.
GEO-CAPE Atmosphere SWG activities Daniel J. Jacob Co-Lead, GEO-CAPE Atmosphere Science Working Group.
Elena Spinei and George Mount Washington State University 1 CINDI workshop March 2010.
EUMETSAT METEOROLOGICAL SATELLITE CONFERENCE 15/09/2013 – 20/09/2013, VIENNA EUMETSAT METEOROLOGICAL SATELLITE CONFERENCE 15/09/2013 – 20/09/2013, VIENNA.
SO 2 Retrievals in the UV from Space Caroline Nowlan Atomic and Molecular Physics Division Harvard-Smithsonian Center for Astrophysics Collaborators: Kelly.
TEMPO & GOES-R synergy update and GEO-TASO aerosol retrieval for TEMPO Jun Wang Xiaoguang Xu, Shouguo Ding, Cui Ge University of Nebraska-Lincoln Robert.
Status of the first NASA EV-I Project, Tropospheric Emissions: Monitoring of Pollution (TEMPO) Kelly Chance, Xiong Liu, Raid Suleiman Smithsonian Astrophysical.
GOME2 Error Study WP 210: Spectral Aliassing PM3 12/2001 WP210: Spectral Aliassing Effects on Slant Column Retrieval R. De Beek.
Validation workshop, Frascati, 13 December 2002Page 1 SCIAMACHY products quality and recommendations Based on presentations and discussions during this.
Page 1ENVISAT Validation Review / GOMOS session - ESRIN – 13th December 2002 ENVISAT VALIDATION WORKSHOP GOMOS Recommendations by the ESL team : Service.
SAO OMI formaldehyde, water vapor and glyoxal retrievals Gonzalo Gonzalez Abad Helen Wang Christopher Miller Kelly Chance Xiong Liu Thomas Kurosu OMI Science.
WP 3 Satellite observations. SCIAMACHY retrieval Month 15: Initial error report Month 18: First dataset for CH4 and CO Incorporation of ECMWF p/T profiles.
Retrieval of Ozone Profiles from GOME (and SCIAMACHY, and OMI, and GOME2 ) Roeland van Oss Ronald van der A and Johan de Haan, Robert Voors, Robert Spurr.
The Second TEMPO Science Team Meeting Physical Basis of the Near-UV Aerosol Algorithm Omar Torres NASA Goddard Space Flight Center Atmospheric Chemistry.
Combining Simultaneously Measured UV and IR Radiances from OMI and TES to Improve Tropospheric Ozone Profile Retrievals Dejian Fu 1, John Worden 1, Susan.
Kenneth Pickering (NASA GSFC), Lok Lamsal (USRA, NASA GSFC), Christopher Loughner (UMD, NASA GSFC), Scott Janz (NASA GSFC), Nick Krotkov (NASA GSFC), Andy.
Intercomparison of OMI NO 2 and HCHO air mass factor calculations: recommendations and best practices A. Lorente, S. Döerner, A. Hilboll, H. Yu and K.
1 Preliminary Ozone Profile and Tropospheric Ozone Retrievals From OMI Xiong Liu 1,2, Kelly Chance 2, Lin Zhang 3, Thomas P. Kurosu 2, John R. Worden 4,
Some thoughts on error handling for FTIR retrievals Prepared by Stephen Wood and Brian Connor, NIWA with input and ideas from others...
Evaluation of OMI total column ozone with four different algorithms SAO OE, NASA TOMS, KNMI OE/DOAS Juseon Bak 1, Jae H. Kim 1, Xiong Liu 2 1 Pusan National.
Trace gas algorithms for TEMPO G. Gonzalez Abad 1, X. Liu 1, C. Miller 1, H. Wang 1, C. Nowlan 2 and K. Chance 1 1 Harvard-Smithsonian Center for Astrophysics.
S5P cloud products Sebastián Gimeno García, Ronny Lutz, Diego Loyola German S5P Verification Meeting 1 Bremen, November Chart 1>
Rutherford Appleton Laboratory Requirements Consolidation of the Near-Infrared Channel of the GMES-Sentinel-5 UVNS Instrument: Task 1: Initial trade-off:
TOMS Ozone Retrieval Sensitivity to Assumption of Lambertian Cloud Surface Part 1. Scattering Phase Function Xiong Liu, 1 Mike Newchurch, 1,2 Robert Loughman.
Simulation Experiments for TEMPO Air Quality Objectives Peter Zoogman, Daniel Jacob, Kelly Chance, Xiong Liu, Arlene Fiore, Meiyun Lin, Katie Travis, Annmarie.
The Orbiting Carbon Observatory (OCO) Mission: Retrieval Characterisation and Error Analysis H. Bösch 1, B. Connor 2, B. Sen 1, G. C. Toon 1 1 Jet Propulsion.
Kelly Chance Harvard-Smithsonian Center for Astrophysics Xiong Liu, Christopher Sioris, Robert Spurr, Thomas Kurosu, Randall Martin,
1 Xiong Liu Harvard-Smithsonian Center for Astrophysics K.V. Chance, C.E. Sioris, R.J.D. Spurr, T.P. Kurosu, R.V. Martin, M.J. Newchurch,
Lok Lamsal, Nickolay Krotkov, Sergey Marchenko, Edward Celarier, William Swartz, Wenhan Qin, Alexander Vasilkov, Eric Bucsela, Dave Haffner 19 th OMI Science.
TEMPO Validation Capabilities Pandora NO 2 Total and tropospheric columns of NO2 from direct sun measurements -> column along a narrow cone (0.5 o ), actual.
GOME2 Error Study WP 260: Slant Column Errors due to neglicence of BRDF PM3 02/2002 Slant Column Errors due to Assumption of.
1 uni-bremen 04/2002 GOME2 Error Assessment Study Error Budget, Error Mitigation and Proposal for Future Work Mark Weber, Rüdiger.
Global Characterization of X CO2 as Observed by the OCO (Orbiting Carbon Observatory) Instrument H. Boesch 1, B. Connor 2, B. Sen 1,3, G. C. Toon 1, C.
1 SO 2 Air Mass Factors for pollution and volcanic emissions OMI Science Team Meeting De Bilt, June 2006 Pieter Valks, Werner Thomas, Thilo Ebertseder,
1 Deriving cloud parameters for O 3 profile retrieval Zhaonan Cai 1, Xiong Liu 1, Kai Yang 2, Kelly Chance 1 1 SAO 2 UMD 4 th TEMPO Science Team Meeting,
Visible vicarious calibration using RTM
TEMPO Instrument Update
Near UV aerosol products
Intercomparison of SCIAMACHY NO2, the Chimère air-quality model and
Huiqun Wang1 Gonzalo Gonzalez Abad1, Xiong Liu1, Kelly Chance1
TEMPO Instrument Update
Meteorological Satellite Center Japan Meteorological Agency
Johan de Haan Pepijn Veefkind
A Discussion on TEMPO Draft CH2O Validation Plan
Intercomparison of SCIAMACHY NO2, the Chimère air-quality model and
6th TEMPO Science Team Meeting
Chris Sioris Kelly Chance
Off-line 3DVAR NOx emission constraints
TEMPO Instrument Update
Presentation transcript:

TEMPO Simulation and Retrieval Tools and Algorithm Testing at SAO Xiong Liu 3 rd TEMPO Science Team Meeting Huntsville, Al, May 27, 2015

11/12/132 TEMPO Retrieval Sensitivity Studies Performed RTM simulations of TEMPO radiance spectra and retrieval sensitivity studies for determining instrument requirements and verifying instrument performance.  VLIDORT: adapted from previous GEO-CAPE tools, with interfaces for viewing geometry, built-in cross sections, pre- and after- convolution, HITRAN line by line calculations, aerosol profiles and plumes, scattering clouds, IPA, Koelemeijer GOME surface albedo database or input surface reflectance spectra  Hourly fields of GEOS-Chem model fields over TEMPO field of regard for 12 days (1 day/month) up to SZA 80°  ~90000 simulations with 10 gases (O 3, NO 2, H 2 CO, SO 2, C 2 H 2 O 2, H 2 O), BrO, OClO, O 2, O 4, 6 types of aerosols, water/ice clouds  TEMPO SNR model: account for optical transmission and grating efficiency, including shot, dark current, RTN, readout, quantization, smear, CTE noise terms  Climatological a priori: climatological for O 3, unconstrained for other trace gas VCDs, consistent with current algorithms Performed RTM simulations of TEMPO radiance spectra and retrieval sensitivity studies for determining instrument requirements and verifying instrument performance.  VLIDORT: adapted from previous GEO-CAPE tools, with interfaces for viewing geometry, built-in cross sections, pre- and after- convolution, HITRAN line by line calculations, aerosol profiles and plumes, scattering clouds, IPA, Koelemeijer GOME surface albedo database or input surface reflectance spectra  Hourly fields of GEOS-Chem model fields over TEMPO field of regard for 12 days (1 day/month) up to SZA 80°  ~90000 simulations with 10 gases (O 3, NO 2, H 2 CO, SO 2, C 2 H 2 O 2, H 2 O), BrO, OClO, O 2, O 4, 6 types of aerosols, water/ice clouds  TEMPO SNR model: account for optical transmission and grating efficiency, including shot, dark current, RTN, readout, quantization, smear, CTE noise terms  Climatological a priori: climatological for O 3, unconstrained for other trace gas VCDs, consistent with current algorithms

11/12/133 TEMPO Retrieval Sensitivity Studies Continue:  Optimal estimation based retrieval sensitivity tool (IDL-based)  Calculate retrieval averaging kernels, estimate retrieval errors for both O 3 profile and other trace gas VCDs and perform error analysis (e.g., radiance errors, polarization sensitivity, forward model parameters) for determining retrieval error budgets and calibration requirements  To be added: BRDF, EOFs of surface reflectance spectra with high-resolution MODIS BRDF climatology  To be added: Rotational-Raman scattering (look-up table) Continue:  Optimal estimation based retrieval sensitivity tool (IDL-based)  Calculate retrieval averaging kernels, estimate retrieval errors for both O 3 profile and other trace gas VCDs and perform error analysis (e.g., radiance errors, polarization sensitivity, forward model parameters) for determining retrieval error budgets and calibration requirements  To be added: BRDF, EOFs of surface reflectance spectra with high-resolution MODIS BRDF climatology  To be added: Rotational-Raman scattering (look-up table) Same as NLLS for VCDs (unconstrained)

11/12/134 Algorithm testing Fully test L0-L2 algorithms using synthetic data:  Hourly high spatial resolution data (e.g., GEOS-5 nature run at 7×7 km 2 from A. Silva): 1 day/month  RTM simulations  Radiance spectrum  L1 data  L0 data  Test L0  L1 and L1  L2 algorithms Fully test L0-L2 algorithms using synthetic data:  Hourly high spatial resolution data (e.g., GEOS-5 nature run at 7×7 km 2 from A. Silva): 1 day/month  RTM simulations  Radiance spectrum  L1 data  L0 data  Test L0  L1 and L1  L2 algorithms