© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10 th ed Pp 92 Parity Method Pp 94 The parity method.

Slides:



Advertisements
Similar presentations
1 生物計算期末作業 暨南大學資訊工程系 2003/05/13. 2 compare f1 f2  只比較兩個檔案 f1 與 f2 ,比完後將結果輸出。 compare directory  以兩兩比對的方式,比對一個目錄下所有檔案的相 似程度。  將相似度很高的檔案做成報表輸出,報表中至少要.
Advertisements

6-1 指標簡介 6-2 指標與陣列 6-3 動態配置記憶體 6-4 本章綜合練習
布林代數的應用--- 全及項(最小項)和全或項(最大項)展開式
第七章 抽樣與抽樣分配 蒐集統計資料最常見的方式是抽查。這 牽涉到兩個問題: 抽出的樣本是否具有代表性?是否能反應出母體的特徵?
: A-Sequence 星級 : ★★☆☆☆ 題組: Online-judge.uva.es PROBLEM SET Volume CIX 題號: Problem D : A-Sequence 解題者:薛祖淵 解題日期: 2006 年 2 月 21 日 題意:一開始先輸入一個.
:Word Morphing ★★☆☆☆ 題組: Problem Set Archive with Online Judge 題號: 10508:word morphing 解題者:楊家豪 解題日期: 2006 年 5 月 21 日 題意: 第一行給你兩個正整數, 第一個代表下面會出現幾個字串,
Section 1.2 Describing Distributions with Numbers 用數字描述分配.
3Com Switch 4500 切VLAN教學.
期末專題 - 吊人頭遊戲 第 35 組 組員 : 電機系 49841XXXX XXX 電機系 49841OOOO OOO.
1 第一章 Word 的基本觀念 內容概要: Word 的特色 啟動與離開 Word 的方法 滑鼠游標與外型的介紹 基本操作 Word 視窗法則 使用 Word 遭遇問題時, 應如何利用軟體特 性而獲得輔助解說.
:New Land ★★★★☆ 題組: Problem Set Archive with Online Judge 題號: 11871: New Land 解題者:施博修 解題日期: 2011 年 6 月 8 日 題意:國王有一個懶兒子,為了勞動兒子,他想了一個 辦法,令他在某天早上開始走路,直到太陽下山前,靠.
: OPENING DOORS ? 題組: Problem Set Archive with Online Judge 題號: 10606: OPENING DOORS 解題者:侯沛彣 解題日期: 2006 年 6 月 11 日 題意: - 某間學校有 N 個學生,每個學生都有自己的衣物櫃.
: ShellSort ★★☆☆☆ 題組: Problem D 題號: 10152: ShellSort 解題者:林一帆 解題日期: 2006 年 4 月 10 日 題意:烏龜王國的烏龜總是一隻一隻疊在一起。唯一改變烏龜位置 的方法為:一隻烏龜爬出他原來的位置,然後往上爬到最上方。給 你一堆烏龜原來排列的順序,以及我們想要的烏龜的排列順序,你.
STAT0_sampling Random Sampling  母體: Finite population & Infinity population  由一大小為 N 的有限母體中抽出一樣本數為 n 的樣 本,若每一樣本被抽出的機率是一樣的,這樣本稱 為隨機樣本 (random sample)
: Matrix Decompressing ★★★★☆ 題組: Contest Volumes with Online Judge 題號: 11082: Matrix Decompressing 解題者:蔡權昱、劉洙愷 解題日期: 2008 年 4 月 18 日 題意:假設有一矩陣 R*C,
期中考參考解答 Date: 2005/12/14 Multimedia Information Systems.
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
Chapter 13 塑模靜態觀點:物件圖 Static View : Object Diagram.
:Problem D: Bit-wise Sequence ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 10232: Problem D: Bit-wise Sequence 解題者:李濟宇 解題日期: 2006 年 4 月 16.
: The largest Clique ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11324: The largest Clique 解題者:李重儀 解題日期: 2008 年 11 月 24 日 題意: 簡單來說,給你一個 directed.
3-3 使用幾何繪圖工具 Flash 的幾何繪圖工具包括線段工具 (Line Tool) 、橢圓形工具 (Oval Tool) 、多邊星形 工具 (Rectangle Tool) 3 種。這些工具畫出 來的幾何圖形包括了筆畫線條和填色區域, 將它們適當地組合加上有技巧地變形與配 色, 不但比鉛筆工具簡單,
: Happy Number ★ ? 題組: Problem Set Archive with Online Judge 題號: 10591: Happy Number 解題者:陳瀅文 解題日期: 2006 年 6 月 6 日 題意:判斷一個正整數 N 是否為 Happy Number.
: Fast and Easy Data Compressor ★★☆☆☆ 題組: Problem Set Archive with Online Judge 題號: 10043: Fast and Easy Data Compressor 解題者:葉貫中 解題日期: 2007 年 3.
3.1 矩陣的行列式 3.2 使用基本運算求行列式 3.3 行列式的性質 3.4 特徵值介紹 3.5 行列式的應用
: Little Red Riding Hood ★★★☆☆ 題組: Contest Volumes Archive with Online Judge 題號: 11067: Little Red Riding Hood 解題者:陳明凱 解題日期: 2008 年 3 月 14 日 題意:
: Ahoy, Pirates! ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11402: Ahoy, Pirates! 解題者:李重儀 解題日期: 2008 年 8 月 26 日 題意:有一個海盜島有 N 個海盜,他們的編號 (id)
: Count DePrimes ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11408: Count DePrimes 解題者:李育賢 解題日期: 2008 年 9 月 2 日 題意: 題目會給你二個數字 a,b( 2 ≦ a ≦ 5,000,000,a.
: Multisets and Sequences ★★★★☆ 題組: Problem Set Archive with Online Judge 題號: 11023: Multisets and Sequences 解題者:葉貫中 解題日期: 2007 年 4 月 24 日 題意:在這個題目中,我們要定義.
: Placing Lampposts ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 10859: Placing Lampposts 解題者:陳志瑜 解題日期: 2011 年 5 月 10 日 題意:美化為 Dhaka City.
:Nuts for nuts..Nuts for nuts.. ★★★★☆ 題組: Problem Set Archive with Online Judge 題號: 10944:Nuts for nuts.. 解題者:楊家豪 解題日期: 2006 年 2 月 題意: 給定兩個正整數 x,y.
資料結構實習-一 參數傳遞.
第10章 移位暫存器 10-1 移位暫存器的基本功能 10-2 串列輸入/輸出移位暫存器 10-3 其他移位暫存器的線路型態
: Efficient Solutions ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 11020: Efficient Solutions 解題者:陳宜佐 解題日期: 2007 年 4 月 24 日 題意:給定 M 個 case.
1 Introduction to Java Programming Lecture 2: Basics of Java Programming Spring 2008.
: Problem G e-Coins ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 10306: Problem G e-Coins 解題者:陳瀅文 解題日期: 2006 年 5 月 2 日 題意:給定一個正整數 S (0
: A-Sequence ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 10930: A-Sequence 解題者:陳盈村 解題日期: 2008 年 5 月 30 日 題意: A-Sequence 需符合以下的條件, 1 ≤ a.
: Beautiful Numbers ★★★★☆ 題組: Problem Set Archive with Online Judge 題號: 11472: Beautiful Numbers 解題者:邱經達 解題日期: 2011 年 5 月 5 日 題意: 若一個 N 進位的數用到該.
Section 4.2 Probability Models 機率模式. 由實驗看機率 實驗前先列出所有可能的實驗結果。 – 擲銅板:正面或反面。 – 擲骰子: 1~6 點。 – 擲骰子兩顆: (1,1),(1,2),(1,3),… 等 36 種。 決定每一個可能的實驗結果發生機率。 – 實驗後所有的實驗結果整理得到。
: GCD - Extreme II ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11426: GCD - Extreme II 解題者:蔡宗翰 解題日期: 2008 年 9 月 19 日 題意: 最多 20,000 組測資,題目會給一個數字.
資料結構實習-二.
: Automatic correction of misspellings ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 11048: Automatic correction of misspellings 解題者:陳宜佐 解題日期:
: Expect the Expected ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11427: Expect the Expected 解題者:李重儀 解題日期: 2008 年 9 月 21 日 題意:玩一種遊戲 (a game.
845: Gas Station Numbers ★★★ 題組: Problem Set Archive with Online Judge 題號: 845: Gas Station Numbers. 解題者:張維珊 解題日期: 2006 年 2 月 題意: 將輸入的數字,經過重新排列組合或旋轉數字,得到比原先的數字大,
Chapter 10 m-way 搜尋樹與B-Tree
: Function Overloading ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 11032:Function Overloading 解題者:許智祺 解題日期: 2007 年 5 月 8 日 題意:判對輸入之數字是否為.
Chapter 9 Counters 計數器 Asynchronous Counter Operation 非同步式計數器的運作
Extreme Discrete Summation ★★★★☆ 題組: Contest Archive with Online Judge 題號: Extreme Discrete Summation 解題者:蔡宗翰 解題日期: 2008 年 10 月 13 日.
Probability Distribution 機率分配 汪群超 12/12. 目的:產生具均等分配的數值 (Data) ,並以 『直方圖』的功能計算出數值在不同範圍內出現 的頻率,及繪製數值的分配圖,以反應出該 機率分配的特性。
1 Introduction to Java Programming Lecture 2: Basics of Java Programming Spring 2009.
計算機概論 第6章 數位邏輯設計.
2005/7 Linear system-1 The Linear Equation System and Eliminations.
電腦的基本單位 類比訊號 (analog signal) 指的是連續的訊號 數位訊號 (digital signal) 指的是以預先定義的符號表示不連續 的訊號 one bit 8 bits=one byte 電腦裡的所有資料,包括文 字、數據、影像、音訊、視 訊,都是用二進位來表示的。
電腦的基本單位 類比訊號 (analog signal) 指的是連續的訊號
Teacher : Ing-Jer Huang TA : Chien-Hung Chen 2015/6/30 Course Embedded Systems : Principles and Implementations Weekly Preview Question CH7.1~CH /12/26.
: Place the Guards ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 11080: Place the Guards 解題者:陳盈村 解題日期: 2008 年 3 月 26 日 題意:有一個國王希望在他的城市裡佈置守衛,
1 Introduction to Java Programming Lecture 2: Basics of Java Programming Spring 2010.
: SAM I AM ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11419: SAM I AM 解題者:李重儀 解題日期: 2008 年 9 月 11 日 題意: 簡單的說,就是一個長方形的廟裡面有敵人,然 後可以橫的方向開砲或縱向開砲,每次開砲可以.
:Count the Trees ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 10007:Count the Trees 解題者:楊家豪 解題日期: 2006 年 3 月 題意: 給 n 個點, 每一個點有自己的 Label,
數字系統與資料表示法 教師: 陳炯勳 數系轉換 r進制數字 稱為 base r或 radix r 有r個計數符號,計數順序逢r歸零(進位) A n A n - 1 ‥‥A 2 A 1 A 0 ﹒A -1 A -2 ‥‥A -m 其中A n 及A.
: Finding Paths in Grid ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11486: Finding Paths in Grid 解題者:李重儀 解題日期: 2008 年 10 月 14 日 題意:給一個 7 個 column.
:Problem E.Stone Game ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 10165: Problem E.Stone Game 解題者:李濟宇 解題日期: 2006 年 3 月 26 日 題意: Jack 與 Jim.
:Rings and Glue ★★☆☆☆ 題組: Problem Set Archive with Online Judge 題號: 10301: Rings and Glue 解題者:施博修 解題日期: 2011 年 5 月 18 日 題意:小約翰有了個大麻煩,他不小心將 rings.
幼兒行為觀察與記錄 第八章 事件取樣法.
1 Introduction to Java Programming Lecture 3 Mathematical Operators Spring 2009.
: How many 0's? ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 11038: How many 0’s? 解題者:楊鵬宇 解題日期: 2007 年 5 月 15 日 題意:寫下題目給的 m 與 n(m
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
1 資料表示法 Chien-Chang Chen Hsuan-Chuang University.
6-1 基本加法器 6-2 平行二進位加法器 6-3 比較器 6-4 解碼器 6-5 編碼器 6-6 數碼轉換器 6-7 多工器 ( 資料選擇器 ) 6-8 解多工器 6-9 同位元產生器 / 檢 查器.
© 2009 Pearson Education, Upper Saddle River, NJ All Rights ReservedFloyd, Digital Fundamentals, 10 th ed Digital Fundamentals Tenth Edition Floyd.
Presentation transcript:

© 2009 Pearson Education, Upper Saddle River, NJ All Rights ReservedFloyd, Digital Fundamentals, 10 th ed Pp 92 Parity Method Pp 94 The parity method is a method of error detection for simple transmission errors involving one bit (or an odd number of bits). A parity bit is an “extra” bit attached to a group of bits to force the number of 1’s to be either even (even parity) or odd (odd parity). The ASCII character for “a” is and for “A” is What is the correct bit to append to make both of these have odd parity? The ASCII “a” has an odd number of bits that are equal to 1; therefore the parity bit is 0. The ASCII “A” has an even number of bits that are equal to 1; therefore the parity bit is 1.

© 2009 Pearson Education, Upper Saddle River, NJ All Rights ReservedFloyd, Digital Fundamentals, 10 th ed PP125 Fig 25 A simplified intrusion detection system using an OR gat e.

© 2009 Pearson Education, Upper Saddle River, NJ All Rights ReservedFloyd, Digital Fundamentals, 10 th ed Pp128 Fig.30 Standard symbols representing the two equivalent operations of a NAND gate.

© 2009 Pearson Education, Upper Saddle River, NJ All Rights ReservedFloyd, Digital Fundamentals, 10 th ed Pp128 Fig 31

© 2009 Pearson Education, Upper Saddle River, NJ All Rights ReservedFloyd, Digital Fundamentals, 10 th ed Pp 129 Fig32

© 2009 Pearson Education, Upper Saddle River, NJ All Rights ReservedFloyd, Digital Fundamentals, 10 th ed Pp129 Fig 33

© 2009 Pearson Education, Upper Saddle River, NJ All Rights ReservedFloyd, Digital Fundamentals, 10 th ed Pp 132 Fig 38 Standard symbols representing the two equivalent operations of a NOR gate.

© 2009 Pearson Education, Upper Saddle River, NJ All Rights ReservedFloyd, Digital Fundamentals, 10 th ed Pp133 Fig 40

© 2009 Pearson Education, Upper Saddle River, NJ All Rights ReservedFloyd, Digital Fundamentals, 10 th ed Pp134 Fig41

© 2009 Pearson Education, Upper Saddle River, NJ All Rights ReservedFloyd, Digital Fundamentals, 10 th ed © 2008 Pearson Education 5. The symbol is for a(n) a. OR gate b. AND gate c. NOR gate d. XOR gate A B X

© 2009 Pearson Education, Upper Saddle River, NJ All Rights ReservedFloyd, Digital Fundamentals, 10 th ed © 2008 Pearson Education 6. A logic gate that produces a HIGH output only when all of its inputs are HIGH is a(n) a. OR gate b. AND gate c. NOR gate d. NAND gate

© 2009 Pearson Education, Upper Saddle River, NJ All Rights ReservedFloyd, Digital Fundamentals, 10 th ed © 2008 Pearson Education 7. The expression X = A + B means a. A OR B b. A AND B c. A XOR B d. A XNOR B

© 2009 Pearson Education, Upper Saddle River, NJ All Rights ReservedFloyd, Digital Fundamentals, 10 th ed © 2008 Pearson Education 8. A 2-input gate produces the output shown. (X represents the output.) This is a(n) a. OR gate b. AND gate c. NOR gate d. NAND gate A X B

© 2009 Pearson Education, Upper Saddle River, NJ All Rights ReservedFloyd, Digital Fundamentals, 10 th ed © 2008 Pearson Education 9. A 2-input gate produces a HIGH output only when the inputs agree. This type of gate is a(n) a. OR gate b. AND gate c. NOR gate d. XNOR gate

© 2009 Pearson Education, Upper Saddle River, NJ All Rights ReservedFloyd, Digital Fundamentals, 10 th ed © 2008 Pearson Education 10. The required logic for a PLD can be specified in an Hardware Description Language by a. text entry b. schematic entry c. state diagrams d. all of the above

© 2009 Pearson Education, Upper Saddle River, NJ All Rights ReservedFloyd, Digital Fundamentals, 10 th ed P131 脈波操作 3-9 pp127/ 中 pp131 若圖 3-28 所示的 A 和 B 兩波輸入 NAND 閘,則輸出波形為何? 解:在時序圖中,共有 4 個時間區間 A 和 B 輸入波皆為 HIGH ,只在 這 4 個時間區段中的輸出波 X 為 LOW 。 相關問題 若 B 輸入波 LOW ,則輸出波和時序圖會有何變化?請畫 出來。 圖 3-28

© 2009 Pearson Education, Upper Saddle River, NJ All Rights ReservedFloyd, Digital Fundamentals, 10 th ed P134 脈波操作 例 3-12 ( 續 ) 要注意的是,此例題與例題 3-13 中所使用的是相同的 2 輸 入端 NAND 閘,但電路圖中卻用了不同的符號,這是為了表示 NAND 閘和輸入反相的 OR 閘用法不同。 相關問題 圖 3-32 的電路要如何改良才能監控四個儲存槽內的 液體體積? Pp129/ 中 pp134 圖 3-32

© 2009 Pearson Education, Upper Saddle River, NJ All Rights ReservedFloyd, Digital Fundamentals, 10 th ed P144 脈波操作 Pp133 Fig 3-47 若 B 輸入波恒為 LOW ,則 輸出波形和時序圖會 變成怎樣?請畫出來 若 B 輸入波恒為 High?

© 2009 Pearson Education, Upper Saddle River, NJ All Rights ReservedFloyd, Digital Fundamentals, 10 th ed P097 以同位法檢測錯誤 表 2-10 由表 2-10 列出每個 BCD 數 要形成偶或奇同位所須的同位 位元,可以看出在數碼上附加 同位位元的方法。各個 BCD 數 的同位位元列在標示 P 的欄中。 同位位元可以附加在代碼 的開頭或末端,端視系統的設 計而定。注意 1 的總數 ( 包含 同位位元在內 ) 在偶同位時要 恆為偶數,在奇同位時則要恆 為奇數。

© 2009 Pearson Education, Upper Saddle River, NJ All Rights ReservedFloyd, Digital Fundamentals, 10 th ed P098 以同位法檢測錯誤 2-34 對下列各位元組指定一個適當的偶數同位位元: (a)1010(b)111000(c) (d) (e) 解:視情形在各代碼中加入同位位元 1 或 0 ,使整個代 碼中 1 的個數為偶數。同位位元在最左邊。 (a)01010(b) (c) (d) (e) 相關問題 在代表字母 K 的 7 位元 ASCII 碼加入一個奇 同位位元。

© 2009 Pearson Education, Upper Saddle River, NJ All Rights ReservedFloyd, Digital Fundamentals, 10 th ed Pp180 In Boolean algebra, multiplication is equivalent to the AND operation. The product of literals forms a product term. The product term will be 1 only if all of the literals are 1. Boolean Multiplication What are the values of the A, B and C if the product term of A. B. C = 1? Each literal must = 1; therefore A = 1, B = 0 and C = 0.

© 2009 Pearson Education, Upper Saddle River, NJ All Rights ReservedFloyd, Digital Fundamentals, 10 th ed Commutative Laws In terms of the result, the order in which variables are ORed makes no difference. The commutative laws are applied to addition and multiplication. For addition, the commutative law states A + B = B + A In terms of the result, the order in which variables are ANDed makes no difference. For multiplication, the commutative law states AB = BA

Copyright ©2009 by Pearson Higher Education, Inc. Upper Saddle River, New Jersey All rights reserved. Digital Fundamentals, Tenth Edition Thomas L. Floyd Figure 4.1 Application of commutative law of addition. Pp181

Copyright ©2009 by Pearson Higher Education, Inc. Upper Saddle River, New Jersey All rights reserved. Digital Fundamentals, Tenth Edition Thomas L. Floyd Figure 4.2 Application of commutative law of multiplication.

© 2009 Pearson Education, Upper Saddle River, NJ All Rights ReservedFloyd, Digital Fundamentals, 10 th ed Associative Laws When ORing more than two variables, the result is the same regardless of the grouping of the variables. The associative laws are also applied to addition and multiplication. For addition, the associative law states A + (B +C) = (A + B) + C For multiplication, the associative law states When ANDing more than two variables, the result is the same regardless of the grouping of the variables. A(BC) = (AB)C

Copyright ©2009 by Pearson Higher Education, Inc. Upper Saddle River, New Jersey All rights reserved. Digital Fundamentals, Tenth Edition Thomas L. Floyd Figure 4.3 Application of associative law of addition. Open file F04-03 to verify. Pp181

Copyright ©2009 by Pearson Higher Education, Inc. Upper Saddle River, New Jersey All rights reserved. Digital Fundamentals, Tenth Edition Thomas L. Floyd Figure 4.4 Application of associative law of multiplication. Open file F04-04 to verify.

© 2009 Pearson Education, Upper Saddle River, NJ All Rights ReservedFloyd, Digital Fundamentals, 10 th ed Distributive Law The distributive law is the factoring law. A common variable can be factored from an expression just as in ordinary algebra. That is AB + AC = A(B+ C) The distributive law can be illustrated with equivalent circuits: Pp182 AB + ACA(B+ C)

Copyright ©2009 by Pearson Higher Education, Inc. Upper Saddle River, New Jersey All rights reserved. Digital Fundamentals, Tenth Edition Thomas L. Floyd Figure 4.5 Application of distributive law. Open file F04-05 to verify.

© 2009 Pearson Education, Upper Saddle River, NJ All Rights ReservedFloyd, Digital Fundamentals, 10 th ed Rules of Boolean Algebra 1. A + 0 = A 2. A + 1 = 1 3. A. 0 = 0 4. A. 1 = 1 5. A + A = A 7. A. A = A 6. A + A = 1 8. A. A = 0 9. A = A = 10. A + AB = A 12. (A + B)(A + C) = A + BC 11. A + AB = A + B Pp182