CS621 : Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 12- Completeness Proof; Self References and Paradoxes 16 th August,

Slides:



Advertisements
Similar presentations
Some important properties Lectures of Prof. Doron Peled, Bar Ilan University.
Advertisements

Mathematical Induction
PROOF BY CONTRADICTION
Review for CS1050. Review Questions Without using truth tables, prove that  (p  q)   q is a tautology. Prove that the sum of an even integer and an.
1 In this lecture  Number Theory ● Rational numbers ● Divisibility  Proofs ● Direct proofs (cont.) ● Common mistakes in proofs ● Disproof by counterexample.
CS344 : Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 9,10,11- Logic; Deduction Theorem 23/1/09 to 30/1/09.
CS344: Introduction to Artificial Intelligence (associated lab: CS386) Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture–5 and 6: Propositional Calculus.
CS344: Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture– 4, 5, 6: A* properties 9 th,10 th and 12 th January,
Copyright © Cengage Learning. All rights reserved.
CS344 : Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 15, 16, 17- Completeness Proof; Self References and.
Instructor: Hayk Melikya
(CSC 102) Discrete Structures Lecture 14.
CS621 : Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 12- Completeness Proof; Self References and Paradoxes 16 th August,
Copyright © Cengage Learning. All rights reserved. CHAPTER 5 SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION.
3.3 Divisibility Definition If n and d are integers, then n is divisible by d if, and only if, n = dk for some integer k. d | n  There exists an integer.
Logic: Connectives AND OR NOT P Q (P ^ Q) T F P Q (P v Q) T F P ~P T F
1 Section 1.2 Propositional Equivalences. 2 Equivalent Propositions Have the same truth table Can be used interchangeably For example, exclusive or and.
1 Inference Supplementary Notes Prepared by Raymond Wong Presented by Raymond Wong.
CPSC 322, Lecture 21Slide 1 Bottom Up: Soundness and Completeness Computer Science cpsc322, Lecture 21 (Textbook Chpt 5.2) March, 5, 2010.
CSE115/ENGR160 Discrete Mathematics 03/22/12 Ming-Hsuan Yang UC Merced 1.
1 Strong Mathematical Induction. Principle of Strong Mathematical Induction Let P(n) be a predicate defined for integers n; a and b be fixed integers.
Mathematical Induction Assume that we are given an infinite supply of stamps of two different denominations, 3 cents and and 5 cents. Prove using mathematical.
Methods of Proof & Proof Strategies
Lecture 9. Arithmetic and geometric series and mathematical induction
Introduction to Proofs
CS344: Introduction to Artificial Intelligence (associated lab: CS386) Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 5: Monotonicity 13 th Jan, 2011.
CS 173, Lecture B August 27, 2015 Tandy Warnow. Proofs You want to prove that some statement A is true. You can try to prove it directly, or you can prove.
March 3, 2015Applied Discrete Mathematics Week 5: Mathematical Reasoning 1Arguments Just like a rule of inference, an argument consists of one or more.
(CSC 102) Lecture 3 Discrete Structures. Previous Lecture Summary Logical Equivalences. De Morgan’s laws. Tautologies and Contradictions. Laws of Logic.
Marriage Problem Your the sovereign in a small kingdom. One of your jobs is to marry off the people in kingdom. There are three rules that apply.
Math 240: Transition to Advanced Math Deductive reasoning: logic is used to draw conclusions based on statements accepted as true. Thus conclusions are.
Advanced Topics in Propositional Logic Chapter 17 Language, Proof and Logic.
CS621: Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 28– Interpretation; Herbrand Interpertation 30 th Sept, 2010.
CS344: Introduction to Artificial Intelligence (associated lab: CS386) Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 19: Interpretation in Predicate.
CS344: Introduction to Artificial Intelligence (associated lab: CS386) Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture–4: Fuzzy Control of Inverted.
Copyright © Zeph Grunschlag, Induction Zeph Grunschlag.
Propositional Logic. Propositions Any statement that is either True (T) or False (F) is a proposition Propositional variables: a variable that can assume.
How do I show that two compound propositions are logically equivalent?
CS621: Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture–7: (a) Formal System;(b) How to read research papers 3 rd August, 2010.
Prof. Pushpak Bhattacharyya, IIT Bombay 1 CS 621 Artificial Intelligence Lecture /08/05 Prof. Pushpak Bhattacharyya Fuzzy Set (contd) Fuzzy.
CS621: Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 3 - Search.
CS344 : Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 9- Completeness proof; introducing knowledge representation.
TRUTH TABLES. Introduction The truth value of a statement is the classification as true or false which denoted by T or F. A truth table is a listing of.
Copyright © Zeph Grunschlag, Induction Zeph Grunschlag.
CS344: Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 17– Theorems in A* (admissibility, Better performance.
Prof. Pushpak Bhattacharyya, IIT Bombay 1 CS 621 Artificial Intelligence Lecture 16 – 09/09/05 Prof. Pushpak Bhattacharyya Soundness, Completeness,
1 Discrete Mathematical Mathematical Induction ( الاستقراء الرياضي )
CS 173, Lecture B August 27, 2015 Tandy Warnow. Proofs You want to prove that some statement A is true. You can try to prove it directly, or you can prove.
CS621: Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture–10: Soundness of Propositional Calculus 12 th August, 2010.
CS 344 Artificial Intelligence By Prof: Pushpak Bhattacharya Class on 12/Feb/2007.
CS344 : Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 4- Logic.
Chapter 1 Logic and proofs
Fall 2002CMSC Discrete Structures1 Chapter 3 Sequences Mathematical Induction Recursion Recursion.
CS621: Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture–6: Propositional calculus, Semantic Tableau, formal System 2 nd August,
CS344 : Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 5- Deduction Theorem.
Chapter 1 Logic and Proof.
CS344 : Introduction to Artificial Intelligence
CS621: Artificial Intelligence
Advanced Algorithms Analysis and Design
Mathematical Induction Recursion
Follow me for a walk through...
Section 2.1 Proof Techniques Introduce proof techniques:   o        Exhaustive Proof: to prove all possible cases, Only if it is about a.
Applied Discrete Mathematics Week 9: Integer Properties
Follow me for a walk through...
Advanced Analysis of Algorithms
Follow me for a walk through...
CS344 : Introduction to Artificial Intelligence
CS621: Artificial Intelligence
CS 621 Artificial Intelligence Lecture /09/05 Prof
Artificial Intelligence
Presentation transcript:

CS621 : Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 12- Completeness Proof; Self References and Paradoxes 16 th August, 2010

Soundness, Completeness & Consistency Syntactic World Theorems, Proofs Semantic World Valuation, Tautology Soundness Completeness * *

An example to illustrate the completeness proof pqp  (p V q) TFT TTT FTT FFT

Running the completeness proof For every row of the truth table set up a proof: 1. p, ~q |- p  (p V q) 2. p, q |- p  (p V q) 3. ~p, q |- p  (p V q) 4. ~p, ~q |- p  (p V q)

Completeness Proof

P 1 P 2 P 3... P n A F F F... F T F F F... T T. T T T... T T We have a truth table with 2 n rows

We should show P 1 ’, P 2 ’, …, P n ’ |- A’ For every row where P i ’ = P i if V(P i ) = T = ~P i if V(P i ) = F And A’ = A if V(A) = T = ~A if V(A) = F

Completeness of Propositional Calculus Statement If V(A) = T for all V, then |--A i.e. A is a theorem. Lemma: If A consists of propositions P 1, P 2, …, P n then P’ 1, P’ 2, …, P’ n |-- A’, where A’ = A if V(A) = true = ~Aotherwise Similarly for each P’ i

Proof for Lemma Proof by induction on the number of ‘→’ symbols in A Basis: Number of ‘→’ symbols is zero. A is ℱ or P. This is true as, |-- (A → A) i.e. A → A is a theorem. Hypothesis: Let the lemma be true for number of ‘→’ symbols ≤ n. Induction: Let A which is B → C, contain n+1 ‘→’

Induction: By hypothesis, P’ 1, P’ 2, …, P’ n |-- B’ P’ 1, P’ 2, …, P’ n |-- C’ If we show that B’, C’ |-- A’ (A is B → C), then the proof is complete. For this we have to show: B, C |-- B → C True as B, C, B |-- C B, ~C |-- ~(B → C) True since B, ~C, B → C |-- ℱ ~B, C |-- B → C True since ~B, C, B |-- C ~B, ~C |-- B → C True since ~B, ~C, B, C → ℱ |-- ℱ Hence the lemma is proved. Proof of Lemma (contd.)

Proof of Theorem A is a tautology. There are 2 n models corresponding to P 1, P 2, …, P n propositions. Consider, P 1, P 2, …, P n |--A and P 1, P 2, …, ~P n |--A P 1, P 2, …, P n-1 |-- P n → A and P 1, P 2, …, P n-1 |-- ~P n → A RHS can be written as: |--((P n → A) → ((~P n → A) → A)) |--(~P n → A) → A |--A Thus dropping the propositions progressively we show |-- A

Self Reference and Paradoxes

Paradox -1 “This statement is false” The truth of this cannot be decided

Paradox -2 (Russell Paradox or Barber Paradox) “In a city, a barber B shaves all and only those who do not shave themselves” Question: Does the barber shave himself? Cannot be answered

Paradox -3 (Richardian Paradox) Order the statements about properties of number in same order. E.g., 1. “A prime no. is one that is divisible by itself of 1.” 2. “ A square no. is one that is product of 2 identical numbers.”.

Paradox -3 (Richardian Paradox) Definition: A number is called Richardian if it does not have the property that it indexes. For example, in the above arrangement 2 is Richardian because it is not a square no.

Paradox -3 (Richardian Paradox) Now, suppose in this arrangement M is the number for the definition of Richardian M : “A no. is called Richardian … “ Question : is M Richardian? Cannot be answered.

Self Reference: source of paradoxes All these paradoxes came because of 1. Self reference 2. Confusion between what is inside a system and what is outside