Anne-Laure Fehrembach, Fabien Lemarchand, Anne Sentenac,

Slides:



Advertisements
Similar presentations
Nanophotonics Class 2 Surface plasmon polaritons.
Advertisements

Strong coupling between Tamm Plasmon and QW exciton
Chris A. Mack, Fundamental Principles of Optical Lithography, (c) 2007
Measuring film thickness using Opti-Probe
Optical sources Lecture 5.
Slab-Symmetric Dielectric- Based Accelerator Rodney Yoder UCLA PBPL / Manhattan College DoE Program Review UCLA, May 2004.
Mikhail Rybin Euler School March-April 2004 Saint Petersburg State University, Ioffe Physico-Technical Institute Photonic Band Gap Structures.
Optomechanical cantilever device for displacement sensing and variable attenuator 1 Peter A Cooper, Christopher Holmes Lewis G. Carpenter, Paolo L. Mennea,
PSI: Polarimetric Spectroscopic Imager - A Simple, High Efficiency, High Resolution Spectro-­Polarimeter Samuel C. Barden Frank Hill.
PHYS 1442 – Section 004 Lecture #21 Wednesday April 9, 2014 Dr. Andrew Brandt Ch 24 Wave Nature of Light Diffraction by a Single Slit or Disk Diffraction.
Resonant gratings for narrow band pass filtering applications
Anton Samusev JASS’05 30 March – 9 April, 2005 Saint Petersburg State Polytechnical University, Ioffe Physico-Technical Institute Polarization effects.
Taming light with plasmons – theory and experiments Aliaksandr Rahachou, ITN, LiU Kristofer Tvingstedt, IFM, LiU , Hjo.
Coating-reduced interferometer optics Resonant waveguide gratings S. Kroker, T. Käsebier, E.-B. Kley, A. Tünnermann.
TeraHertz Kerr effect in GaP crystal
Indistinguishability of emitted photons from a semiconductor quantum dot in a micropillar cavity S. Varoutsis LPN Marcoussis S. Laurent, E. Viasnoff, P.
Frequency Bistability in a Diode Laser Using Diffraction Gratings Forrest Smith 1, Weliton Soares 2, Samuel Alves 2, Itamar Vidal 2, Marcos Oria 2 1 State.
Properties of Multilayer Optics An Investigation of Methods of Polarization Analysis for the ICS Experiment at UCLA 8/4/04 Oliver Williams.
Agilent Technologies Optical Interconnects & Networks Department Photonic Crystals in Optical Communications Mihail M. Sigalas Agilent Laboratories, Palo.
Lecture 1 Review of Wave optics Today Introduction to this course Light waves in homogeneous medium Monochromatic Waves in inhomogeneous medium.
Theoretical investigations on Optical Metamaterials Jianji Yang Supervisor : Christophe Sauvan Nanophotonics and Electromagnetism Group Laboratoire Charles.
ARC 11/02/10 Recent Advances in Surface Plasmon Resonance: From Biosensor to Space/astronomical Interest Hololab and CSL S. Habraken, C. Lenaerts, and.
Diffraction vs. Interference
4-1 Chap. 7 (Optical Instruments), Chap. 8 (Optical Atomic Spectroscopy) General design of optical instruments Sources of radiation Selection of wavelength.
Rayleigh Scattering & Mie Scattering
VOLUME-PHASE HOLOGRAPHIC GRATINGS FOR ASTRONOMICAL SPECTROGRAPHS James A. Arns, Willis S. Colburn, & Mark Benson (Kaiser Optical Systems, Inc.) Samuel.
Polarization-preserving of laser beam in Fabry Perot Cavity Accelerator center, IHEP Li Xiaoping.
5 Components Common to All Optical Spectrometers Source Transparent Sample Holder Wavelength Selector Radiation Detector Signal Processor and Readout.
1 Antenna design and optimisation Test-bed of mechanical tilt CSEM.
D EDICATED S PECTROPHOTOMETER F OR L OCALIZED T RANSMITTANCE A ND R EFLECTANCE M EASUREMENTS Laetitia ABEL-TIBERINI, Frédéric LEMARQUIS, Michel LEQUIME.
Overview of course Capabilities of photonic crystals Applications MW 3:10 - 4:25 PMFeatheringill 300 Professor Sharon Weiss.
A Stable Zn-indiffused LiNbO 3 Mode Converter at μm Wavelength STUT Hsuan-Hsien Lee 2, Ruey-Ching Twu 1, Hao-Yang Hong 1, and Chin-Yau Yang 1 1.
Waveguide High-Speed Circuits and Systems Laboratory B.M.Yu High-Speed Circuits and Systems Laboratory 1.
A. Bunkowski Nano-structured Optics for GW Detectors 1 A.Bunkowski, O. Burmeister, D. Friedrich, K. Danzmann, and R. Schnabel in collaboration with T.
BROOKHAVEN SCIENCE ASSOCIATES BIW ’ 06 Lepton Beam Emittance Instrumentation Igor Pinayev National Synchrotron Light Source BNL, Upton, NY.
T-Ray Reflection Computed Tomography Jeremy Pearce Electrical & Computer Engineering.
Achromatic waveplate in THz frequency region based on the structured parallel metal plates Ashida Lab Noriyuki Mukai.
Optical Subsystem Roy Esplin Dave McLain. Internal Optics Bench Subassembly 2 Gut Ray Dichroic Beamsplitter (MWIR reflected, LWIR transmitted) LWIR Lens.
Eusoballoon optics test Baptiste Mot, Gilles Roudil, Camille Catalano, Peter von Ballmoos Test configuration Calibration of the light beam Exploration.
Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan National Taiwan University, Taiwan National Central University, Taiwan National Chung.
Cascaded Solid Spaced Filters for DWDM applications
ABSTRACT The design of a complete system level modeling and simulation tool for optical micro-systems is the focus of our research . We use a rigorous.
EUV Maskless Lithography J. Vac. Sci. Technol. B 30, (2012); 9/25/20121K. Johnson
1 Use of gratings in neutron instrumentation F. Ott, A. Menelle, P. Humbert and C. Fermon Laboratoire Léon Brillouin CEA/CNRS Saclay.
Novel Semi-Transparent Optical Position Sensors for high-precision alignment monitoring applications Sandra Horvat, F.Bauer, V.Danielyan, H.Kroha Max-Planck-Institute.
1 Use of gratings in neutron instrumentation F. Ott, A. Menelle, P. Humbert and C. Fermon Laboratoire Léon Brillouin CEA/CNRS Saclay.
1.Stable radiation source 2.Wavelength selector 3.Transparent sample holder: cells/curvettes made of suitable material (Table 7- 2) 4.Radiation detector.
DIFFRACTION AND INTERFERENCE. Specification Topics Interference The concept of path difference and coherence The laser as a source of coherent monochromatic.
Cavity soliton switching and pattern formation in an optically-pumped vertical-cavity semiconductor amplifier Laboratoire de Photonique et de Nanostructures.
Dye-doped polymer micro-cavity
Single photon counting detector for THz radioastronomy. D.Morozov 1,2, M.Tarkhov 1, P.Mauskopf 2, N.Kaurova 1, O.Minaeva 1, V.Seleznev 1, B.Voronov 1 and.
Presented by Darsen Lu (3/19/2007)
PHYS 221 Recitation Kevin Ralphs Week 11. Quiz Question A slit of width 130 μm passes a plane wave of infrared radiation of wavelength 1020 nm to a screen.
Nanolithography Using Bow-tie Nanoantennas Rouin Farshchi EE235 4/18/07 Sundaramurthy et. al., Nano Letters, (2006)
Microphononic Crystals B. Ash, G. R. Nash, P. Vukusic ex.ac.uk/BenAsh Abstract. This project investigates.
Planar Chiral Metamaterials & their application to optoelectronics devices W. Zhang, A. Papakostas, A. Potts, D. M. Bagnall, N. I. Zheludev Microelectronic.
By Abdullah Framalawi Aly Abouhaswa Polarized Neutron Spectrometry : Studying nanostructure magnetism with the use of polarized neutron reflectometry.
High performance optical absorber based on a plasmonic metamaterial 岑剡.
25/05/2007POSIPOL FOUR MIRRORS Fabry Perot resonator at LAL-Orsay Y. Fedala With help of F. Zomer, R.Cizeron.
Aerogel detector revisited Sokolov Oleksiy, UNAM, progress report, 20 Sept 2006 E int = M – wall reflectivity є – PMT relative area Belle geometry (traditional):
Date of download: 6/1/2016 Copyright © 2016 SPIE. All rights reserved. Flow chart of finite-difference time-domain method. The electric field component.
Narrow-band filtering with resonant gratings under oblique incidence Anne-Laure Fehrembach, Fabien Lemarchand, Anne Sentenac, Institut Fresnel, Marseille,
Date of download: 6/3/2016 Copyright © 2016 SPIE. All rights reserved. Propagation of optical rays through a volume Bragg grating in transmitting (dotted.
UNIT-3 ADVANCES IN METROLOGY
Photonic Bandgap (PBG) Concept
31 outline particles, waves, and light
Engineered Diffusers: EDC-A Series
Diffraction vs. Interference
Wave front and energy front
Presentation transcript:

Polarization independent ultra-sharp filtering at oblique incidence with resonant gratings Anne-Laure Fehrembach, Fabien Lemarchand, Anne Sentenac, Institut Fresnel, Marseille, France Olga Boyko, Anne Talneau Laboratoire de Photonique et de Nanostructures, Marcoussis, France LPN Goal : Dl=0.2nm ~100% efficiency with standard collimated incident beam (Dq=0.2°) polarization independence oblique incidence Resonant grating l q 1 R l

Resonant grating filters: basic principles (kp , lp) x z y q l kinc kx (kp, 2p/lp) 2p/l light cone kinc kinc (-1) p s (kp , lp) E d kinc (-1) kp kx ky l ~ lp kx - K 2p/l K=2p/d kinc (-1) kp 2p/lp Advantages and limitations: ultra-narrow bandwidth: Dl < 0.1nm achievable weak angular tolerance: Dq < 0.05° strong polarization sensitivity

Angular tolerant configuration Perturbative model: Dl  e1 Dq  e2 2p/l kx x y z kinc (-1) (+1) kx (-1) kinc 2p/l kx 2p/l kinc (-1) kinc (-1) (+1) TE2 TE1 kx 2p/l 2 counter propagative modes, small e1 , large e2

Polarization independent configuration symmetric TEp anti - symmetric TEs p s symmetry plane kinc (0,1) (1,0) symmetry plane 2p/l k s p e1,-1 Symmetry plane, small e1,-1

Angular tolerant and polarization independent oblique incidence configuration Symmetry plane, 2 counter propagative modes k 2p/l e1,-1 p s kx 2p/l e1,-1 p s kinc (0,1) (-1,0) (0,-1) TE2 (1,0) TE1 symmetry plane Dq  e2,0 Dl  e1,0 small e1,-1, small e1,0 , large e2,0 Fehrembach, Sentenac, Appl. Phys. Lett., 86, 121105 (2005)

Design and fabrication design  "Doubly periodic patern" fabrication layers deposition: glass substrate / Ta2O5 / SiO2/ Ta2O5 / SiO2 (220nm etched) electronic lithography etching (component size 1mm2) Diameters dB = 347nm dA= 257nm dC= 170nm d/4 d = 890nm A B C small e1,-1, small e1,0 , large e2,0 Scanning electron microscopy picture of the grating

Results: resonant grating dispersion relation Minimum of transmittivity versus incident angle and wavelength theory experience A B A’ B’ experimental and theoretical dispersion relations are similar (same gap width ~ 5nm, opening around 5.8°) Points A and A’: polarization independent, angular tolerant resonance Points B et B’: weak angular tolerance, polarization sensitivity

Results: resonant grating spectra diameter at waist 580µm, full angle divergence 0.2° Theory q=5.5° q=5.8° Experience q=5.5° q=5.8° Points B and B’: s and p resonances split up, wide bandwidth, low efficiency (Dq=0.02°) Points A and A’: polarization independence, narrow bandwidth, quite good efficiency

Results: experience vs theory Plane wave Theory, Gaussian beam divergence 0.2° Experience Dl=0.1nm Dq=0.17° R=100% T=0% R+T=100% Performances deterioration: Etching imperfections (write fields stitching errors) ? little diffusion at resonance but 20% energy is lost Dl=0.4nm Dl=0.2nm R=65% T=35% R+T=100% R=28% T=52% R+T=80% Grating finite size effects (1mm²) ?

Conclusion Experimental demonstration of a resonant grating filter with 0.4nm bandwidth polarization independence under 5.8° of incidence Performances deterioration: weak angular tolerance and finite size effect Etching in high index, over a wide area New component: Dl=0.2nm, Dq=0.6°, etched over 3mm²

Transmittivity versus collecting angle, at and outside resonance 1 -15.0 -10.0 -5.0 0.0 5.0 10.0 15.0 Rnorm Hrnorm 0.1 diffusion ? Collecting angle of the detector: 2.7mrad (1mm located at 36cm) transmittivity 0.01 diffusion ? 0.001 Collecting angle (mrad)

Transmittivity and reflectivity with a collecting lens 1 0.9 0.8 0.7 pour info: angle de 0.6 collection R et T 200 mrad en T (lentille) 0.5 et 60 mrad en R (cube) 20% of energy at resonance remains lost 0.4 0.3 0.2 0.1 1541 1541.5 1542 1542.5 1543 longueur d'onde

Polarisation s+p Incident Réfléchi