Chapter 3 Dr. Bahaa Al-Sheikh & Eng. Mohammed Al-Sumady Intoduction to Engineering Introduction to Engineering Design 1.

Slides:



Advertisements
Similar presentations
1 Copyright © 2011 by Mosby, Inc., an affiliate of Elsevier Inc. Chapter 20 Supervising and Evaluating the Work of Others.
Advertisements

Note: Lists provided by the Conference Board of Canada
Modern Supervision: Concepts and Skills
Chapter Thirteen Human Resource Management © 2007 The McGraw-Hill Companies, Inc., All Rights Reserved. McGraw-Hill/Irwin Introduction to Business.
Should You Become an Entrepreneur?
Continuous Value Enhancement Process
Workplace Realities Getting a Job and Getting Ahead.
Total Quality in Organizations
Contents Click the link below to go directly to the slides for that chapter. Chapter 1 ■ Your Personal Strengths Chapter 2 ■ The Roles You Play Chapter.
R R R CSE870: Advanced Software Engineering (Cheng): Intro to Software Engineering1 Advanced Software Engineering Dr. Cheng Overview of Software Engineering.
Total Quality in Organizations
TOGETHER EVERYONE ACHIEVES MORE
The Manager as Leader 3.1 The Importance of Leadership
Total Quality in Organizations
Capstone Design Project (CDP) Civil Engineering Department First Semester 1431/1432 H 10/14/20091 King Saud University, Civil Engineering Department.
Advanced Manufacturing Laboratory Department of Industrial Engineering Sharif University of Technology Session #19.
SOFT SKILLS C.RAGHAVA RAO.
Team Building WHY?.
#17 - Involve Users in the Development Model of Multinational Corporations - Is it worth it? Experience Report IRCSE '08: IDT Workshop Friday 31 October.
Designing and implementing of the NQF Tempus Project N° TEMPUS-2008-SE-SMHES ( )
Chapter 3 Introduction to Engineering Design
Chapter 12 The Manager as Leader.
1212. CHAPTER 12 Leadership Copyright © 1999 Addison Wesley Longman 2 Leadership - Key Terms Leadership: The exercise of influence by one member of a.
The Management Process Today
Chapter 11 The Project Team
Investigating Your Career
PROJECT MANAGEMENT. A project is one – having a specific objective to be completed within certain specifications – having defined start and end dates.
Advantages of Teaming Varied expertise. More ideas. More time and effort. Minimized mistakes. Pleasant and rewarding. More confidence in results.
Communications Skills (ELE 205)
Chapter 6 Team Work Blueprint By Lec.Hadeel Qasaimeh.
Chapter 3 Dr. Bahaa Al-Sheikh & Eng. Mohammed Al-Sumady Intoduction to Engineering Introduction to Engineering Design 1.
Effective Groups and Teams
Prepared by: Omar almegbel. ahmad ayasrah Ammar alirr. Ahmad aljarrah. Amjad aljarrah..
Understanding Groups & Teams Ch 15. Understanding Groups Group Two or more interacting and interdependent individuals who come together to achieve particular.
1/13 MER Design of Thermal Fluid Systems Professor Anderson Union College Spring 2012.
3-1 CHAPTER 3 Introduction to Engineering Design © 2011 Cengage Learning Engineering. All Rights Reserved.
Communications Skills (ELE 205) Dr. Ahmad Dagamseh Dr. Ahmad Dagamseh.
Unit II – Leadership Skills Chapter 2 - Leadership Section 1 – Leadership Behavior and Styles.
January 4, 2005MER160 Course Intro1 MER Design of Thermal Fluid Systems Professors Anderson, Bruno, Kosky Union College Winter Term 2005.
The Manager as a Leader Chapter 12. The Importance of Leadership Definition: Leadership is the ability to influence individuals and groups to cooperatively.
Team building Prepared by : MS\ Abeer foad MS\ Fatima Al- sakran Supervised by : Dr \ Nazik zakari.
Management & Leadership
Small Group Work as Teaching Strategy By P. Anand Ganesh Resource person & PGT ( CS) K V 2 Golconda, Hyderabad.
Unit-5 TQM culture Presented by N.Vigneshwari.  Culture is “the sum total learned beliefs, values, and customs that serve to direct the consumer behavior.
Effective Teamwork Team Building
What is Engineering Design? A lose method engineers follow Finding the best change, with limited resources, in an environment of uncertainty The creation.
1 The importance of Team Working and Personal Attributes.
Chapter 13: Managing Groups and Teams Learning Objectives
Lecture 2. An Overview of Engineering Design JANUARY 2016 GE105 Introduction to Engineering Design College of Engineering King Saud University.
Planning and Organizing Chapter 13. The Planning Function Planning for a business should stem from the company’s Business Plan – The business plan sets.
Lecture 3 TQM 311 lecturer: Noura Al-Afeef Medical Record Department 1.
The Engineering Design Process
Management, Supervision, and Decision Making Chapter 2.
TEAM BUILDING. WHY IS TEAM BUILDING IMPORTANT? YOUR ABILITY TO GET ALONG WITH OTHER PEOPLE, AND USING TEAMWORK WILL LARGELY DETERMINE HOW SUCCESSFUL YOU.
Total Quality in Organizations 1. Growth of Modern Quality Management 2 Manufacturing quality Improved product designs Service quality Performance excellence.
Chapter 10 Interpersonal Skills. Self-Esteem Self-esteem is how you perceive your worth or value as a person. Self-esteem is how you perceive your worth.
3-1 Introduction to Engineering Design © 2011 Cengage Learning Engineering. All Rights Reserved.
 In Ned law are a company that provides strategic consulting and management, composed of a team of high academic and social esteem, focused on optimization,
Advanced Software Engineering Dr. Cheng

An Overview of Engineering Design
Leadership Qualities.
Chapter Three Engineering Design Process
Chapter Three Engineering Design Process
Chapter Three Engineering Design Process
An Overview of Engineering Design
Chapter Three Engineering Design Process
Objectives 1. An understanding of the importance of management to society and individuals 2. An understanding of the role of management 3. An ability to.
Objectives 1. An understanding of the importance of management to society and individuals 2. An understanding of the role of management 3. An ability to.
An Overview of Engineering Design
Presentation transcript:

Chapter 3 Dr. Bahaa Al-Sheikh & Eng. Mohammed Al-Sumady Intoduction to Engineering Introduction to Engineering Design 1

 Engineers, regardless of their backgrounds, follow certain steps when designing the products and services we use in our every day lives. 2

In this chapter we will Introduce you to the engineering design process Discuss the basic steps that most engineers follow when designing a product Discuss the importance of considering sustainability in design 3

Introduce important design factors such as  Teamwork  Project scheduling  Material selection  Economic consideration  Engineering standards and codes Present cases studies in civil, mechanical/ electrical engineering 4

The main objective of this chapter is: To introduce the steps engineers follow to successfully design products or provide services that we use in our everyday lives 5

Design Process – Basic Steps: 1. Recognizing the need for a product or a service 2. Problem definition and understanding 3. Research and preparation 4. Conceptualization 5. Synthesis 6. Evaluation 7. Optimization 8. Presentation 6

 Step 1: Recognizing the need for a product or a service 7

Step 2: Problem definition and understanding This is the most important step in any design process Before you move on to the next step  Make sure you understand the problem  Make sure that the problem is well defined Good problem solvers are those who first fully understand what the problem is. 8

Step 3: Research and preparation (Project Panning) Collect useful information  Search to determine if a product already exists  Perhaps you could adopt or modify existing components  Review and organize the information collected in a suitable manner 9

Step 4: Conceptualization ( Brainstorming) Generate ideas or concepts that could offer reasonable solutions to your problem 10

Step 5: Synthesis At this point you begin to consider details Perform calculations, run computer models, narrow down the type of materials to be used, size the components of the system, and answer questions about how the product is going to be fabricated. Consult pertinent codes and standards and make sure that your design will be in compliance with these codes and standards. 11

Step 6: Evaluation Analyze the problem in more detail Identify critical design parameters and consider their influence in your final design Make sure that all calculations are performed correctly Experimental Investigations. When possible, working models must be created and tested. Best solution must be identified from alternatives Details of design must be worked out fully 12

13

Step 7: Optimization – minimization or maximization Optimization is based on some particular criterion such as cost, strength, size, weight, reliability, noise, or performance. Optimizing individual components of an engineering system does not necessarily lead to an optimized system 14

An optimization procedure 15

 Step 8: Presentation 16

Step 8: Presentation You need to communicate your solution to the client, who may be your boss, another group within your company, or an outside customer Engineers are required to give oral and written progress reports on a regular basis to various groups; consequently, presentation could well be an integral part of many other design steps 17

Engineering economics Material selection Teamwork Conflicts Resolution Project scheduling and task chart Evaluating alternatives Patent, trademark, and copyright Engineering standards and codes 18

Economic factors always play important roles in engineering design decision making Products that are too expensive cannot be sold at a price that consumers can afford and still be profitable to the company Products must be designed to provide services not only to make our lives better but also to make good profits for the manufacturer 19

Selection of materials is an important design decision Examples of properties to consider when selecting materials  Density  Ultimate strength  Flexibility  Machinability  Durability  Thermal expansion  Electrical & thermal conductivity  Resistance to corrosion 20

Material properties depend on many factors  How the material was processed  Its age  Its exact chemical composition  Any nonhomogenity or defect within the material Material properties change with temperature and time as the material ages In practice, you use property values provided by the manufacturer for design; textbook values are typical values 21

Electrical resistivity : a measure of resistance of material to flow of electricity. Density : : how compact the material is for a given volume. Modulus of Elasticity : how easily material will stretch or shorten. Modulus of Rigidity : a measure of how easily a material can be twisted or sheared. 22

Modulus of resilience : a mechanical property of a material that shows how effective the material is in absorbing mechanical energy without going through any permanent damage. Modulus of toughness : a mechanical property of a material that indicates the ability of the material to handle overloading before it fractures. Thermal expansion : the change in the length of a material that would occur if the temperature of the material is changed. 23

Thermal conductivity : how good the material is in transferring thermal energy. Heat capacity : represents the amount of thermal energy required to raise the temperature of one kilogram mass of a material by one degree Celsius. Materials with large heat capacity values are good at storing thermal energy 24

Vapor pressure :Fluids with low vapor- pressure values will not evaporate as quickly as those with high values of vapor pressure. Bulk modulus of compressibility : represents how compressible the fluid is. How easily can one reduce the volume of the fluid when the fluid pressure is increased. Viscosity : a measure of how easily the given fluid can flow. The higher the viscosity value is, the more resistance the fluid offers to flow. 25

Design team A group of individuals with complementary expertise, problem solving skills, and talent who are working together to solve a problem or achieve a common goal Employers are looking for individuals who not only have a good grasp of engineering fundamentals but who can also work well with others in a team environment 26

Successful teams have the following components: The project that is assigned to a team must have clear and realistic goals. These goals must be understood and accepted by all members of the team. The team should be made up of individuals with complementary expertise, problem solving skills, background, and talent. The team must have a good leader. 27

The team leadership and the environment in which discussions take place should promote openness, respect, and honesty. The team goals and needs should come before individual goals and needs. 28

The Organizer – experienced and confident; trusted by members of the team and serves as a coordinator for the entire project The Creator – good at coming up with new ideas, sharing them with other team members, and letting the team develop the ideas further The Gatherer – enthusiastic ( متحمس )and good at obtaining things, looking for possibilities, and developing contacts 29

The Motivator – energetic, confident, and outgoing; good at finding ways around obstacles ( عقبات ). The Evaluator – intelligent and capable of understanding the complete scope of the project; good at judging outcomes correctly The Team Worker – tries to get everyone to come together, does not like friction or problems among team members 30

The Solver – reliable and decisive and can turn concepts into practical solution The Finisher – can be counted on to finish his or her assigned task on time; detail oriented and may worry about the team’s progress toward finishing the assignment 31

When a group of people work together, conflicts sometimes arise. Conflicts could be the result of Miscommunication Personality differences The way events and actions are interpreted by a member of a team 32

Managing conflicts is an important part of a team dynamic In managing conflicts, it is important to recognize there are three types of people:  Accommodating  Compromising  Collaborative 33

Accommodating team members - avoid conflicts  Allow assertive individuals to dominate  Making progress as a whole difficult  Could lead to poor team decision 34

Compromising team members Demonstrate moderate level of assertiveness and cooperation. By compromising, the team may have sacrificed the best solution for the sake of group unity 35

Collaborative Conflict Resolution Approach  High level of assertiveness and cooperation by the team  No finger pointing  Team proposes solutions  Means of evaluation  Combine solutions to reach an ideal solution 36

 A process that engineering managers use to ensure that a project is completed on time and within the allocated budget 37

When a design is narrowed down to a few workable concepts, evaluation of these concepts is needed before detail design is pursued Each design would have its own evaluation criteria 38

39

Sustainability and sustainable engineering can be defined as “design and development that meets the needs of the present without compromising the ability of future generations to meet their own needs.” 40

Engineers contribute to both private and public sectors of our society In private sector, they design and produce the goods and services that we use in our daily lives to allow us to enjoy a high standard of living In public sector, they support local, state, and federal mission such as meeting our infrastructure needs, energy and food security, and national defense 41

Engineers contribute to both private and public sectors of our society In private sector, they design and produce the goods and services that we use in our daily lives to allow us to enjoy a high standard of living In public sector, they support local, state, and federal mission such as meeting our infrastructure needs, energy and food security, and national defense 42

Increasingly, because of worldwide socioeconomic trends, environmental concerns, and earth’s finite resources, more is expected of engineers Future engineers are expected to design and provide goods and services that increase the standard of living and advance health care, while addressing serious environmental and sustainability concerns In designing products and services, engineers must consider the link among earth’s finite resources, environmental, social, ethical, technical, and economical factors 43

You should know the basic design steps that all engineers follow, regardless of their background, to design products and services You should realize that economics plays an important role in engineering decision making You should realize that the selection of material is an important design decision You should be familiar with the common traits of good teams 44

Questions? 45