LOI Planning The Very Forward Region Tom Markiewicz/SLAC Takashi Maruyama/SLAC Uriel Nauenberg/UCB SiD Collaboration Meeting, Boulder, CO 19 September.

Slides:



Advertisements
Similar presentations
Proposal for a new design of LumiCal R. Ingbir, P. Ruzicka, V. Vrba October 07 Malá Skála.
Advertisements

ILC – The International Linear Collider Project Univ. of Colorado, Boulder, November ILC Valencia SIMULATION OF BEAMCAL WITH B FIELDS SIMULATION.
March, 11, 2006 LCWS06, Bangalore, India Very Forward Calorimeters readout and machine interface Wojciech Wierba Institute of Nuclear Physics Polish Academy.
TESLA R&D: LCAL/LAT Achim Stahl DESY Zeuthen Cracow Tel Aviv Minsk Prague Colorado Protvino UCL London Dubna.
Global Design Effort Detector concept # Plenary introductory talk IRENG07 Name September 17, 2007.
NLC - The Next Linear Collider Project NLC IP Layout What’s New? Tom Markiewicz LC’99, Frascati, Italy October 1999.
Background Studies Takashi Maruyama SLAC ALCPG 2004 Winter Workshop January 8, 2004.
1 Physics Impact of Detector Performance Tim Barklow SLAC March 18, 2005.
NLC - The Next Linear Collider Project IR Working Group Summary Tom Markiewicz LC R&D Workshop, UCSC June 29, 2002.
IR Beamline and Sync Radiation Takashi Maruyama. Collimation No beam loss within 400 m of IP Muon background can be acceptable. No sync radiations directly.
SiD Forward Region Tom Markiewicz/SLAC KILC’12, Taegu, Korea 24 April 2012.
August 2005Snowmass Workshop IP Instrumentation Wolfgang Lohmann, DESY Measurement of: Luminosity (precise and fast) Energy Polarisation.
Karsten Büßer Beam Induced Backgrounds at TESLA for Different Mask Geometries with and w/o a 2*10 mrad Crossing Angle HH-Zeuthen-LC-Meeting Zeuthen September.
SID Engineering Marco Oriunno (SLAC), Jan CLIC Workshop, CERN Toward the TDR.
Effect of the Shape of the Beampipe on the Luminosity Measurement September 2008 Iftach Sadeh Tel Aviv University DESY.
22 December 20143rd FCAL Hardware WG Meeting 1 BeamCal sensors overview Sergej Schuwalow, DESY Hamburg.
1 LumiCal Optimization and Design Takashi Maruyama SLAC SiD Workshop, Boulder, September 18, 2008.
Ronen Ingbir Collaboration High precision design Tel Aviv University HEP Experimental Group Krakow2006.
Jan MDI WS SLAC Electron Detection in the Very Forward Region V. Drugakov, W. Lohmann Motivation Talk given by Philip Detection of Electrons and.
Karsten Büßer Beam Induced Backgrounds at TESLA for Different Mask Geometries with and w/o a 2*10 mrad Crossing Angle LCWS 2004 Paris April 19 th 2004.
Re-evaluating the Need for a anti-DID in SiD T. Markiewicz/SLAC SiD Optimization Meeting
Octobre MPI Munich FCAL Workshop in Munich W. Lohmann, DESY The 14 mrad X-angle, two IPs The push-pull option The next calendar dates Where we are.
March 2004LCWS Stanford Instrumentation of the Very Forward Region of a Linear Collider Detector Wolfgang Lohmann, DESY.
SiD IR & MDI Engineering Progress Prelude to a Discussion of Integration with ILD and Based on Marco Oriunno’s Jan 2008 Talk at SiD CM Tom Markiewicz/SLAC.
2. December 2005Valencia Workshop Very Forward Region Instrumentation Wolfgang Lohmann, DESY Basic functions: - Hermeticity to small polar angles - Fast.
Simulation of Beam-Beam Background at CLIC André Sailer (CERN-PH-LCD, HU Berlin) LCWS2010: BDS+MDI Joint Session 29 March, 2010, Beijing 1.
September, 19 FCAL Worlshop in Tel Aviv W. Lohmann, DESY Physics Requirements Input From Theory Lessons from LEP LumiCal Simulations BeamCal.
MDI DBD Editors Report Tom Markiewicz/SLAC SiD Collaboration Meeting, SLAC 22 August 2012.
SiD R&D tasks for the LOI - Subsystem R&D tasks - Summary of SiD R&D - Prioritization of R&D tasks -> Document for DoE/NSF ~Feb 2009 (Mainly based on Marty’s.
Septembre SLAC BeamCal W. Lohmann, DESY BeamCal: ensures hermeticity of the detector to smallest polar angles -important for searches Serves as.
NLC - The Next Linear Collider Project IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC ALCPG SLAC 08 January 2004.
CLICdp achievements in 2014 and goals for 2015 Lucie Linssen, CERN on behalf of the CLICdp collaboration CLIC workshop, January 30 th
BES-III Workshop Oct.2001,Beijing The BESIII Luminosity Monitor High Energy Physics Group Dept. of Modern Physics,USTC P.O.Box 4 Hefei,
HEP Tel Aviv University LumiCal (pads design) Simulation Ronen Ingbir FCAL Simulation meeting, Zeuthen Tel Aviv University HEP experimental Group Collaboration.
February, INP PAN FCAL Workshop in Cracow W. Lohmann, DESY The BCD (Baseline Configuration Document) The next calendar dates Where we are with FCAL.
NLC - The Next Linear Collider Project Possible 20 mrad Crossing Angle Geometry for ILC MDI Tom Markiewicz SLAC TESLA MDI mtg. 26 August 2004.
Re-evaluating the Need for a anti-DID in SiD T. Markiewicz/SLAC SiD Optimization Meeting Updated
SiD Collaboration Meeting Highlights Tom Markiewicz/SLAC ILC BDS Meeting 08 May 2007.
An Hybrid QD0 for SID ? Marco Oriunno (SLAC), Nov. 14, 2013 LCWS13, TOKYO.
The Luminosity Calorimeter Iftach Sadeh Tel Aviv University Desy ( On behalf of the FCAL collaboration ) June 11 th 2008.
1 LumiCal Optimization Simulations Iftach Sadeh Tel Aviv University Collaboration High precision design May 6 th 2008.
SiD MDI Issues Tom Markiewicz/SLAC Beijing ACFA/GDE Meeting 05 February 2007.
Electron Identification Efficiency of the BeamCal (modified SiD02) Jack Gill, Uriel Nauenberg, Gleb Oleinik University of Colorado at Boulder 3 March 2009.
1/24 SiD FCAL Takashi Maruyama Tom Markiewicz SLAC TILC’09, Tskuba, Japan, April 2009 Contributors: SLAC M. BreidenbachFNALW. Cooper G. Haller K.
September 2007SLAC IR WS Very Forward Instrumentation of the ILC Detector Wolfgang Lohmann, DESY Talks by M. Morse, W. Wierba, myself.
1 LoI FCAL Takashi Maruyama SLAC SiD Workshop, SLAC, March 2-4, 2009 Contributors: SLAC M. BreidenbachFNALW. Cooper G. Haller K. Krempetz T. MarkiewiczBNLW.
November, 7, 2006 ECFA06, Valencia, Spain LumiCal & BeamCal readout and DAQ for the Very Forward Region Wojciech Wierba Institute of Nuclear Physics Polish.
Octobre 2007LAL Orsay Very Forward Instrumentation of the ILC Detector Wolfgang Lohmann, DESY.
FCAL Krakow meeting, 6. May LumiCal concept including the tracker R. Ingbir, P.Růžička, V. Vrba.
I nstrumentation of the F orward R egion Collaboration High precision design ECFA - Durham2004 University of Colorado AGH University, Cracow I nstitute.
Very Forward Instrumentation: BeamCal Ch. Grah FCAL Collaboration ILD Workshop, Zeuthen Tuesday 15/01/2008.
William Morse ILC R&D April 19, ILC Detector R&D William Morse Physics Dept., BNL.
SiD MDI Update Topics for Discussion Tom Markiewicz/SLAC ILC BDS Meeting 15 May 2007.
LumiCal High density compact calorimeter at the ILC Wojciech Wierba Institute of Nuclear Physics PAS Cracow, Poland.
Octobre LAL Orsay Report from the IRENG07 workshop at SLAC W. Lohmann, DESY from Septembre 17 – 21, ~ 100 participants - plenary and parallel sessions.
FCAL Takashi Maruyama SLAC SiD Workshop, 15 – 17 November, 2010, Eugene, Oregon.
Towards Snowmass Jul. 13, 2005 Y.Sugimoto. Charge for Detector WGs Charge for Concept Groups: work towards a baseline design define performance criteria.
SiD R&D Plan and Opportunities for New Collaborators
Machine Detector Interface Design Updates
SVT subchapters & editors
Effect of L* Changes on Vertex Detector and Forward Calorimeter Performance LCWS 2015 Whistler, BC, Canada November Bruce Schumm UCSC/SCIPP 1.
Layout of Detectors for CLIC
SiD Calorimeter R&D Collaboration
Summary of the FCAL Workshop Cracow, February 12-13
Maria Person Gulda , Uriel Nauenberg, Gleb Oleinik,
Changes to SiD since the DBD
SiD Engineering Status Report
Report about “Forward Instrumentation” Issues
Simulation study for Forward Calorimeter in LHC-ALICE experiment
A 12-min Introduction to The ILC Machine Detector Interface and SiD
Presentation transcript:

LOI Planning The Very Forward Region Tom Markiewicz/SLAC Takashi Maruyama/SLAC Uriel Nauenberg/UCB SiD Collaboration Meeting, Boulder, CO 19 September 2008

Boulder SiD CM: FCAL LOI T. Markiewicz/SLAC 2 of 21 EXCEL pix of September 2008 Design LUMICAL Support LUMICAL BEAMCAL BEAMPIPE POLYCARBONATE W Mask

Boulder SiD CM: FCAL LOI T. Markiewicz/SLAC 3 of 21 LOI Outline of SiD FCAL Subsystem 1.1 System Definition –1.3.1 Lumical –1.3.2 Beamcal –1.3.3 Tungsten Mask –1.3.4 Low Z Mask –1.3.5 Cantilevered support –1.3.6 Beampipe (with VXD group; description assumed to be elsewhere-Global issue?) –NOT GammaCal (Posipol, Espec group) Vacuum (if any) (MDI) Not interface to QD0 nor fast feedback system 1.2 Contact authors –TWM & TVM

Boulder SiD CM: FCAL LOI T. Markiewicz/SLAC 4 of Geometry Lumical –Ecal structure: mm mm –OR=19.5cm on magnet axix –IR = 6.0cm centered at 1.6m x = 1.1cm below axis –Z_start=ECAL_start-10cm=1.58m Beamcal –Z_start=2.95m for historical reasons as all background calculations for pairs depend on this Consistent with L*=3.5m and 10cm behind beamcal for flanges, bpm to QD0 cryostat –50 layers of 2.5mm W + tbd “Si” readout –1.5cm radius exit hole, 1.0cm entrance hole at ±3m x –OR=~12.5cm centered on detector axis, dependent on W mask and support structure details W Mask –3cm tungsten, conic at 31mrad, offset in radius from 6cm Lumical by 2cm = 8cm at Lumical back end Low Z mask –13cm Polycarbonate with 25cm OD and same apertures as Beamcal

Boulder SiD CM: FCAL LOI T. Markiewicz/SLAC 5 of Function Lumical –Luminosity –Luminosity Spectrum –Hermiticity –Two Photon Veto Beamcal –Beam Parameters and Luminosity –Two photon Veto Tungsten Mask –Protect TRK, HCAL from pair photon albido Low Z Mask –Protect VXD, TRK, HCAL from pair charged albido Cantilevered Support Tube –Stiff, accurate, vibration free support for FCAL, masks, beampipe and VXD

Boulder SiD CM: FCAL LOI T. Markiewicz/SLAC 6 of Lumical Requirements & Specifications 1E-3 resolution on luminosity measurement MIP sensitivity: S/N > 10 Hardware –Radial segmentation –Angular resolution –Dynamic range –B/C time resolution or adequate buffer space –Alignment –Petal-to-Petal dead space –Support –Electronics cooling Physics Benchmarks –Bhabha scattering

Boulder SiD CM: FCAL LOI T. Markiewicz/SLAC 7 of Beamcal Requirements & Specifications Hardware Radial segmentation Angular resolution Dynamic range B/C time resolution Radiation Hardness Alignment Petal-to-Petal dead space Support Electronics cooling Physics Benchmarks E+e- pairs via QED processes Stau production Efficiency of two photon veto

Boulder SiD CM: FCAL LOI T. Markiewicz/SLAC 8 of Description of FCAL Subsystem 2.1 Concept Redundant, described in 1.3, Baseline Design Redundant, described in 1.3, Expected Performance Redundant, described in 2.5

Boulder SiD CM: FCAL LOI T. Markiewicz/SLAC 9 of FCAL System Illustrations Mechanics –Plan view such as slide 2, this ppt

Boulder SiD CM: FCAL LOI T. Markiewicz/SLAC 10 of Lumical Performance & Specification Illustrations Energy resolution (TVM, slide 14) Luminosity resolution –radial segmentation –Phi segmentation –Longitudinal segmentation & depth Hermiticy (TVM, slide 6) –Longitudinal position of Lumical Mechanics –Petal layout from 6” wafers

Boulder SiD CM: FCAL LOI T. Markiewicz/SLAC 11 of 21 Suggested LumiCal Tables & Figures

Boulder SiD CM: FCAL LOI T. Markiewicz/SLAC 12 of Beamcal Performance & Specification Illustrations Energy resolution &/or electron identification efficiency as a function energy, radial distance from extraction line axis and phi for 2-photon events Stau pt distribution for signal/background w & w/o 2-photon veto Baseline: –Lumi r-phi segmentation, –non-projective geometry Constant radius hole appropriately displaced from cylinder axis by the same amount for each of 50 layers

Boulder SiD CM: FCAL LOI T. Markiewicz/SLAC 13 of W Mask Performance & Specification Illustrations Tracker & HCAL Backgrounds as a function of –Mask thickness –Lumical – Beamcal separation –Beamcal z loaction

Boulder SiD CM: FCAL LOI T. Markiewicz/SLAC 14 of Low Z Performance & Specification Illustrations Tracker/HCAL backgrounds as function of mask thickness

Boulder SiD CM: FCAL LOI T. Markiewicz/SLAC 15 of Mechanical Support Performance & Specification Illustrations Mechanical 3D picture Deflection under load –could be a one number quote or a diagram vs. annular thickness Vibration modes (could be text)

Boulder SiD CM: FCAL LOI T. Markiewicz/SLAC 16 of Options and Unresolved Issues 2.5 Global FCAL –Installation & Servicing Lumical –Readout design –Alignment verification/measurement Beamcal –Choice of sensor –Readout design –Beamcal OD & junction with support & W mask W Mask –Engineered design that dovetails with beamcal and lumical Low Z Mask Support –Needs engineered, as opposed to conceptual, design –Reproducible alignment of Lumical to ~30 um –Adverse influence on QDO vibration spectrum BeamPipe –HOM heating, cooling & wakefields due to abrupt radial transitions

Boulder SiD CM: FCAL LOI T. Markiewicz/SLAC 17 of R&D Roadmap (1) 3.1 R&D Issues Choice of Beamcal Sensor Development of appropriate front end electronics 3.2 R&D Milestones Prototype Lumical: 1 petal (360°/32) Prototype Lumical beam test –Single electron response Prototype BeamCal: 1 petal Prototype Beamcal beam tests –Radiation Hardness Test –Single electron response –Response to showering electrons

Boulder SiD CM: FCAL LOI T. Markiewicz/SLAC 18 of R&D Roadmap (2) 3.3 Resources Need Manpower not yet estimated M&S not yet estimated

Boulder SiD CM: FCAL LOI T. Markiewicz/SLAC 19 of Cost Estimate None: See MIB or some other chapter in LOI

Boulder SiD CM: FCAL LOI T. Markiewicz/SLAC 20 of Anticipated IDAG Questions & Answers None

Boulder SiD CM: FCAL LOI T. Markiewicz/SLAC 21 of Organization of the FCAL Group 6.1 Institutions Involved Beampipe: FNAL & SLAC Beamcal: FNAL, SLAC, UCB Lumical: SLAC Readout: SLAC Mechanics: SLAC