Volker Lutter, Laborastrophysik, Universität Kassel 69 th ISMS Champaign-Urbana, Illinois HIGH RESOLUTION INFRARED SPECTROSCOPY AND SEMI-EXPERIMENTAL STRUCTURES.

Slides:



Advertisements
Similar presentations
Infrared spectroscopy of metal ion-water complexes
Advertisements

Thomas A. Blake and Robert L. Sams
Microsolvation of  -propiolactone as revealed by Chirped-Pulse Fourier Transform Microwave Spectroscopy Justin L. Neill, Matt T. Muckle, Daniel P. Zaleski,
A Deperturbation Method to Aid in the Interpretation of Infrared Isotopic Spectra G. Garcia and C. M. L. Rittby Texas Christian University Fort Worth,
Fourier Transform Infrared Emission Spectra of MgF 2 Peter Bernath, Daniel Frohman Department of Chemistry and Biochemistry Old Dominion University, Norfolk,
Rotationally-resolved infrared spectroscopy of the polycyclic aromatic hydrocarbon pyrene (C 16 H 10 ) using a quantum cascade laser- based cavity ringdown.
E QUILIBRIUM S TRUCTURE OF THE S IMPLE S KEW C HAIN M OLECULE HSOH 61 th International Symposium on Molecular Spectroscopy, Ohio June, Oliver.
CHARACTERIZATION of the SiC 3 H - anion N. Inostroza 1, M. L. Senent 1 1 Instituto de Estructura de la Materia, C.S.I.C, Departamento de Astrofísica Molecular.
The spectral method: time-dependent quantum dynamics of FHF - : Potential Energy Surface, Vibrational Eigenfunctions and Infrared Spectrum. Guillermo Pérez.
Infrared Spectroscopy of Doubly-Charged Metal-Water Complexes
Systematics in the IR Absorptions of Odd Carbon Chains 21 st of June 2005, Columbus Dmitry Strelnikov, Roman Reusch and Wolfgang Krätschmer Max-Planck-Institut.
Supersonic Jet Spectroscopy on TiO 2 Millimeter-wave Spectroscopy of Titanium Monoxide and Titanium Dioxide 63 rd International Symposium on Molecular.
Anh T. Le and Timothy C. Steimle* The molecular frame electric dipole moment and hyperfine interaction in hafnium fluoride, HfF. Department of Chemistry.
Determination of succinic acid structure in the gas phase by cm/mm spectroscopy Estíbaliz Méndez Alija University of The Basque Country, UPV/EHU, Spain.
DENNIS J. CLOUTHIER, ROBERT GRIMMINGER, and BING JIN, Department of Chemistry, University.
Ab Initio Calculations of the Ground Electronic States of the C 3 Ar and C 3 Ne Complexes Yi-Ren Chen, Yi-Jen Wang, and Yen-Chu Hsu Institute of Atomic.
The complete molecular geometry of salicyl aldehyde from rotational spectroscopy Orest Dorosh, Ewa Białkowska-Jaworska, Zbigniew Kisiel, Lech Pszczółkowski,
1 Broadband Chirped-Pulse Fourier- Transform Microwave (CP-FTMW) Spectroscopic Investigation of the Structures of Three Diethylsilane Conformers Amanda.
The inversion motion in the Ne – NH 3 van der Waals dimer studied via microwave spectroscopy Laura E. Downie, Julie M. Michaud and Wolfgang Jäger Department.
Microwave Spectrum of Hydrogen Bonded Hexafluoroisopropanol  water Complex Abhishek Shahi Prof. E. Arunan Group Department of Inorganic and Physical.
The Low Frequency Broadband Fourier Transform Microwave Spectroscopy of Hexafluoropropylene Oxide, CF 3 CFOCF 2 Lu Kang 1, Steven T. Shipman 2, Justin.
High-accuracy ab initio calculation of metal quadrupole-coupling parameter Lan Cheng, John Stanton, and Jürgen Gauss Department of Chemistry, University.
1 Ab initio and Infrared Studies of Carbon Dioxide Containing Complex Zheng Su and Yunjie Xu Department of Chemistry, University of Alberta, Edmonton,
Multi-wavelength Astronomy and the Virtual Observatory, ESAC, Spain, Dec. 1 − 3, 2008 Holger S. P. Müller, J. Stutzki, S. Schlemmer I. Physikalisches.
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
SILYL FLUORIDE: LAMB-DIP SPECTRA and EQUILIBRIUM STRUCTURE Cristina PUZZARINI and Gabriele CAZZOLI Dipartimento di Chimica “G. Ciamician”, Università di.
Rotationally-Resolved Spectroscopy of the Bending Modes of Deuterated Water Dimer JACOB T. STEWART AND BENJAMIN J. MCCALL DEPARTMENT OF CHEMISTRY, UNIVERSITY.
Equilibrium Molecular Structure and Spectroscopic Parameters of Methyl Carbamate J. Demaison, A. G. Császár, V. Szalay, I. Kleiner, H. Møllendal.
A LABORATORY AND THEORETICAL INVESTIGATION OF THE SILICON SULFUR MOLECULES H 2 SiS AND Si 2 S. MICHAEL C. MCCARTHY 1, PATRICK THADDEUS 1, HARSHAL GUPTA.
THE ANALYSIS OF HIGH RESOLUTION SPECTRA OF ASYMMETRICALLY DEUTERATED METHOXY RADICALS CH 2 DO AND CHD 2 O (RI09) MING-WEI CHEN 1, JINJUN LIU 2, DMITRY.
A NEW 2 Σ Σ + TRANSITION OF PtF BY INTRACAVITY LASER ABSORPTION SPECTROSCOPY LEAH C O'BRIEN, TAYLOR DAHMS, KAITLIN A WOMACK Department of Chemistry,
E. Gonzalez, C.M.L. Rittby, and W.R.M. Graham
Antal Zoltan-PhD candidate 6304-Computational Chemistry March 2010.
Effective C 2v Symmetry in the Dimethyl Ether–Acetylene Dimer Sean A. Peebles, Josh J. Newby, Michal M. Serafin, and Rebecca A. Peebles Department of Chemistry,
70th ISMS Vibration-Rotation Analysis of the 13 CO 2 Asymmetric Stretch Fundamental Band in Ambient Air for the Physical Chemistry Teaching Laboratory.
POLAR (ACYCLIC) ISOMER OF FORMIC ACID DIMER: RAMAN SPECTROSCOPY STUDY
Infrared Observation of the ν 1 (  ) and ν 2 (  ) Stretching Modes of Linear GeC 3 E. Gonzalez, C.M.L. Rittby, and W.R.M. Graham Department of Physics.
ABSOLUTE 17 O NMR SCALE: a JOINT ROTATIONAL SPECTROSCOPY and QUANTUM-CHEMISTRY STUDY Cristina PUZZARINI and Gabriele CAZZOLI Dipartimento di Chimica “G.
Expanded Choices for Vibration-Rotation Spectroscopy in the Physical Chemistry Teaching Laboratory Joel R. Schmitz and David A. Dolson Department of Chemistry.
A Joint Theoretical and Experimental Study of the SiO 2 H 2 Isomeric System Michael C. McCarthy Harvard-Smithsonian Center for Astrophysics Jürgen Gauss.
Anomalous CH Stretch Intensity Effects in Halomethyl Radicals: “Charge-Sloshing” vs. Bond- Dipole Contributions to IR Transition Moments E.S. Whitney,
Rotational Spectra Of Cyclopropylmethyl Germane And Cyclopropylmethyl Silane: Dipole Moment And Barrier To Methyl Group Rotation Rebecca A. Peebles, Sean.
Gas Phase Infrared Spectroscopy of Protonated Species Department of Chemistry University of Georgia Athens Georgia,
Itaru KURUSU, Reona YAGI, Yasutoshi KASAHARA, Haruki ISHIKAWA Department of Chemistry, School of Science, Kitasato University ULTRAVIOLET AND INFRARED.
Laboratory of Millimetre-wave Spectroscopy of Bologna The ROTATIONAL SPECTRUM of HDO : ACCURATE SPECTROSCOPIC and HYPERFINE PARAMETERS G. Cazzoli*, V.
Infrared Spectra of Anionic Coinage Metal-Water Complexes J. Mathias Weber JILA and Department of Chemistry and Biochemistry University of Colorado at.
1 The r 0 Structural Parameters of Equatorial Bromocyclobutane, Conformational Stability from Temperature Dependent Infrared Spectra of Xenon Solutions,
Broadband Microwave Spectroscopy to Study the Structure of Odorant Molecules and of Complexes in the Gas Phase Sabrina Zinn, Chris Medcraft, Thomas Betz,
Barney Ellison — ISMS, RB05
Heavy Atom Vibrational Modes and Low-Energy Vibrational Autodetachment in Nitromethane Anions Michael C. Thompson, Joshua H. Baraban, Devin A. Matthews,
High-resolution mid-infrared spectroscopy of deuterated water clusters using a quantum cascade laser- based cavity ringdown spectrometer Jacob T. Stewart.
Production of vibrationally hot H 2 (v=10–14) from H 2 S photolysis Mingli Niu.
Microwave Spectroscopic Investigations of the Xe-H 2 O and Xe-(H 2 O) 2 van der Waals Complexes Qing Wen and Wolfgang Jäger Department of Chemistry, University.
 Small molecules forming the elementary blocks of biomolecules: amino acids, small peptides, nucleic acids, sugars… Can serve as validation tools relatively.
The 61 th International Symposium on Molecular Spectroscopy. ‘06 Funded by: NSF- Exp. Phys. Chem Mag. Hyperfine Interaction in 171 YbF and 173 YbF Timothy.
A New Potential Energy Surface for N 2 O-He, and PIMC Simulations Probing Infrared Spectra and Superfluidity How precise need the PES and simulations be?
Bryan Changala JILA & Dept. of Physics, Univ. of Colorado Boulder
Wei Li, Mingfei Zhou Fudan University , Shanghai, China
Substitution Structures of Large Molecules and Medium Range Correlations in Quantum Chemistry Calculations Luca Evangelisti Dipartmento di Chimica “Giacomo.
Computational Chemistry:
Wei Li, Mingfei Zhou Fudan University, Shanghai, China
INFRARED SPECTROSCOPY OF DISILICON-CARBIDE, Si2C
Theoretical Prediction of the Rotational Constants for
Electronic Structure of CaOCa Via Laser Induced Fluorescence (LIF)
Stéphane Bailleux Nitrosyl iodide, INO: millimeter-wave spectroscopy guided by ab initio quantum chemical computation.
THE BENDING VIBRATIONS OF THE C3-ISOTOPOLOGUES IN THE 1
Threshold Ionization and Spin-Orbit Coupling of CeO
Fourier Transform Infrared Spectral
Molecular Vibrations and IR Spectroscopy
F H F O Semiexperimental structure of the non rigid BF2OH molecule (difluoroboric acid) by combining high resolution infrared spectroscopy and ab initio.
Presentation transcript:

Volker Lutter, Laborastrophysik, Universität Kassel 69 th ISMS Champaign-Urbana, Illinois HIGH RESOLUTION INFRARED SPECTROSCOPY AND SEMI-EXPERIMENTAL STRUCTURES OF Si 2 C 3 AND Ge 2 C 3 Volker Lutter, Laborastrophysik, Universität Kassel, Germany +++

Volker Lutter, Laborastrophysik, Universität Kassel 69 th ISMS Champaign-Urbana, Illinois Theoretical Investigation C-chains and C-X-chains in quantum chemistry (ab initio methods) Extensively studied by Botschwina et al. Experimental Investigation C-chains and C-X-chains in the gas phase (Inert gas matrices and small XC, XC 2 excluded) C n : n=3,4,5,6,7,8,9,10,13 (IR, Saykally et al., Giesen et al.) SiC n : n=3,4,5,6,7,8 (mostly FTMW, SiC 4 also Infrared) SC n : n=4,5,6,7,8,9 (FTMW) SiC n S: n=2,3,4,6(FTMW) Symmetric carbon hetero clusters SC n S: n=3 SiC n Si: n=3 Motivation Experimental data from symmetric hetero clusters are underrepresented for linear carbon hetero clusters no permanent dipole moment

Volker Lutter, Laborastrophysik, Universität Kassel 69 th ISMS Champaign-Urbana, Illinois Structural (Fundamental) Chemistry and Symmetric Molecules Advantage Symmetric molecules exhibit less different bond lengths Less parameters enable 1.Higher possible computational levels (ab initio) 2.Lower computational costs at the same level of theory Symmetric chain like X 2 C 3 molecules provide benchmarks for quantum theory Disadvantage Symmetric molecules do not have a permanent dipole moment 1.Not accessible through microwave measurements 2.Experimental data need to be taken from infrared measurements How can we get access to symmetric carbon chain like hetero clusters? Which feedback can these data give to theoretical structure chemistry?

Volker Lutter, Laborastrophysik, Universität Kassel 69 th ISMS Champaign-Urbana, Illinois Experimental Setup IR Nd:YAG

Volker Lutter, Laborastrophysik, Universität Kassel 69 th ISMS Champaign-Urbana, Illinois In preparation, Lutter et. al. J. Krieg et al. Rev. Sci. Instrum. 82, (2011) S. Thorwirth, V.Lutter et al., J. Mol. Spectrosc. 270, (2011) Measurements Main Isotopologue of Si 2 C 3 3 = (14) cm -1 B 0 = (39) MHz   = 4.116(55) MHz   = -3.30(11) MHz ab initio 3 = cm -1 (CCSD(T)/cc-pV(T+d)Z)   = MHz (CCSD(T)/ cc-pV(Q+d)Z)   = MHz (CCSD(T)/ cc-pV(Q+d)Z)  B 0 = MHz (CCSD(T)/ cc-pV(Q+d)Z) All Carbon Substituted Si 2 13 C 3 3 = (2) cm -1 B 0 = (104) MHz   = 4.105(144) MHz ab initio 3 = cm -1 (CCSD(T)/ cc-pV(T+d)Z)   = MHz (CCSD(T)/ cc-pV(Q+d)Z)  B 0 = MHz (CCSD(T)/ cc-pV(Q+d)Z)

Volker Lutter, Laborastrophysik, Universität Kassel 69 th ISMS Champaign-Urbana, Illinois In preperation, Lutter et. al. J. Krieg et al. Rev. Sci. Instrum. 82, (2011) S. Thorwirth, V.Lutter et al., J. Mol. Spectrosc. 270, (2011) Measurements Main Isotopologue of Si 2 C 3 3 = (14) cm -1 B 0 = (39) MHz   = 4.116(55) MHz   = -3.30(11) MHz ab initio 3 = cm -1 (CCSD(T)/cc-pV(T+d)Z)   = MHz (CCSD(T)/ cc-pV(Q+d)Z)   = MHz (CCSD(T)/ cc-pV(Q+d)Z)  B 0 = MHz (CCSD(T)/ cc-pV(Q+d)Z) All Carbon Substituted Si 2 13 C 3 3 = (2) cm -1 B 0 = (104) MHz   = 4.105(144) MHz ab initio 3 = cm -1 (CCSD(T)/ cc-pV(T+d)Z)   = MHz (CCSD(T)/ cc-pV(Q+d)Z)  B 0 = MHz (CCSD(T)/ cc-pV(Q+d)Z) Semi-Experimental semi B e = MHz ae-CCSD(T)/cc-pwCVQZ calc B e = MHz deviation MHz semi B e = exp B 0  calc  B 0 ae-CCSD(T)/cc-pwCVQZ r C-C Å r Si-C = Å Semi-Experimental semi B e = MHz ae-CCSD(T)/cc-pwCVQZ calc B e = MHz deviation MHz semi B e = exp B 0  calc  B 0 ae-CCSD(T)/cc-pwCVQZ r C-C Å r Si-C = Å

Volker Lutter, Laborastrophysik, Universität Kassel 69 th ISMS Champaign-Urbana, Illinois What happens for larger atoms? 1.More electrons to be computed 2.Higher computational costs 3.Larger influence of electron correlations 4.Stronger relativistic effects Exchanging silicon atoms by germanium atoms 1.Ge 2 C 3 has same geometry as Si 2 C 3 2.Same electronic configuration 1  g 3.Comparable vibrational dipole moment (C-C asym. stretch.) 4.Matrix isolation measurement available (vibrational studies) E. Gonzalez, C. M. L. Rittby, W. R. M. Graham, J. Phys. Chem. 112, 43, , (2008) One Step Further

Volker Lutter, Laborastrophysik, Universität Kassel 69 th ISMS Champaign-Urbana, Illinois Main Isotopologue Experimental 74 GeC 3 74 Ge 3 = (9) cm -1 B 0 = (27) MHz   = 1.593(38) MHz ab initio (CCSD(T)/cc-pVTZ) 3 = cm -1   = MHz  B 0 = MHz semi B e = MHz CCSD(T)/cc-pwCVQZ calc B e = MHz semi B e = exp B 0  calc  B 0 Measurements

Volker Lutter, Laborastrophysik, Universität Kassel 69 th ISMS Champaign-Urbana, Illinois Measurements 74 GeC 3 74 Ge B 0 = (27)   =1.593(28) 74 GeC 3 72 Ge B 0 = (20)   =1.612(38) 74 GeC 3 70 Ge B 0 = (96)   =1.628(138) 72 GeC 3 72 Ge B 0 = (31)   =1.625(43) 72 GeC 3 70 Ge B 0 = (126)   =1.648(177) 70 GeC 3 70 Ge B 0 = (333)   =1.663(474) Experimental  B 0 = calc   =  B 0 = calc   =  B 0 = calc   =  B 0 = calc   =  B 0 = calc   =  B 0 = calc   = CCSD(T)/ cc-pVTZ All Values in MHz semi B e = calc B e  = semi B e = calc B e = semi B e = calc B e = semi B e = calc B e = semi B e = calc B e = semi B e = calc B e = Semi-Exp. vs CCSD(T)/cc-pwCVQZ

Volker Lutter, Laborastrophysik, Universität Kassel 69 th ISMS Champaign-Urbana, Illinois Can we derive a semi-experimental structure from these IR-data? Question

Volker Lutter, Laborastrophysik, Universität Kassel 69 th ISMS Champaign-Urbana, Illinois Semi-Experimental Structure Experimental data provide n different Isotopologues n=2 for SiC 3 Si and n=6 for GeC 3 Ge Zero-point vibrational corrections are available from CCSD(T) theory for both species. Semi-experimental rotational constants in the equilibrium are available semi B e = exp B 0  calc  B 0 Uncertainties are in the range of Å (for Si 2 C 3 ). Not helpfull! Fixed C-C bond length leads to precise values for the X-C distance Methode r C-C r Ge-C CCSD(T)/cc-pwCVQZ Å Å Semi-Exp. (Fixed at r C-C = Å) Å Methode r C-C r Si-C CCSD(T)/cc-pwCVQZ Å Å Semi-Exp. (Fixed at r C-C = Å ) Å

Volker Lutter, Laborastrophysik, Universität Kassel 69 th ISMS Champaign-Urbana, Illinois Conclusion C Å Å SiC 3 Si Å Å GeC 3 Ge Å Å Values in red from CCSD(T)/cc-pwCVQZ Values in black, semi-exp. values from this work

Volker Lutter, Laborastrophysik, Universität Kassel 69 th ISMS Champaign-Urbana, Illinois Dipl. Phys. Volker Lutter Laborastrophysik Universität Kassel Prof. Dr. Thomas Giesen Laborastrophysik Universität Kassel Dr. Sven Thorwirth Laboratory Astrophysics Universität zu Köln, Germany Prof. Dr. Jürgen Gauss Theoretische Chemie Universität Mainz, Germany Team / Funding Funding Deutsche Forschungsgemeinschaft TH 1301/3-1 and TH 1301/3-2

Volker Lutter, Laborastrophysik, Universität Kassel 69 th ISMS Champaign-Urbana, Illinois Thank you for your attention!

Volker Lutter, Laborastrophysik, Universität Kassel 69 th ISMS Champaign-Urbana, Illinois Semi-Experimental Structure Methode r C-C r Ge-C CCSD(T)/cc-pwCVQZ Å Å Fixed r C-C = Å ANO-RCC-unc Å Å ANO-RCC-unc/SFX2c-1e Å Å rel. contraction Å Å