MIT : NED : Mission to Mars Presentation of proposed mission plan
MIT : NED : Introduction Team Members: Dr. Andrew Kadak; Vasek Dostal; Kalina Galabova ; Knut Gezelius; John Koser; Joe Palaia; Nilchiani Roshanak; Eugene Shwageraus; Pete Yarsky
MIT : NED : Overview Statement of Purpose: –To form a plan for a series of Mars missions utilizing nuclear energy, which, through technological verification, will allow subsequent capability expansion and finally for a manned mission to Mars.
MIT : NED : Requirements and Constraints Demonstrate feasibility of nuclear powered space propulsion Allow safe transport of humans to and from Mars Expand the scientific capacity of individual missions Reduce astronauts’ radiation exposure Deployable by near term The technology is transformational
MIT : NED : Mission Objectives Total of 4 missions are planned. Manned missions will be scheduled to reduce exposure in CGR
MIT : NED : Mission 1 Nuclear Powered (100–200 kWe) Mars Telecommunications Satellite
MIT : NED : M1 Objectives –High data rate communication –Increase the science yield (data storage) –Validate space nuclear reactor technology –Validate reactor powered propulsion technology for Earth-Mars transfer. –Provide a platform for high power Mars orbit experiments (active radar) –Provide real-time orbital video and high resolution pictures
MIT : NED :
MIT : NED : Mission 2 Nuclear Powered Mars Surface Lander with In-Situ Resource Utilization, Sample Return, and Demonstration of the Mars Transfer System
MIT : NED : M2 Objectives –Demonstrate LEO to LMO transfer –Demonstrate surface reactor operation –Validate ISRU –Demonstrate rover refueling operations –Provide surface data link to satellite –Fuel a sample capsule assent rocket –Launch a sample capsule to LMO –Demonstrate automated Mars orbital rendezvous –Return selected samples to Earth (ISS)
MIT : NED :
MIT : NED :
MIT : NED :
MIT : NED : Mission 3 Manned Mission Precursor –Development and Demonstrate Infrastructure to prepare for arrival of the human crew.
MIT : NED : M3 Objectives -Define a robust planetary surface exploration capacity capable of safely and productively supporting crews on the surface of Mars for 500 to 600 days each mission -Define a capability to be able to live off the land -Ensure Infrastructure is operational before a crew is committed to the site
MIT : NED : M3 Phase 1 Launch a full scale NP ISRU Plant Demonstrate Large Scale ISRU on Mars
MIT : NED : M3 Phase 2 Launch Crew Habitat Module into LEO after successfully completing Phase 1.
MIT : NED : M3 Phase 3 Dock Habitat with ISS Test Habitat Functionality at the ISS
MIT : NED : M3 Phase 4 Ascent Vehicle and Cargo is landed on the Mars surface near Large Scale ISRU plant
MIT : NED : M3 Phase 5 Power Systems and Rovers are Deployed Production of Propellant and Oxidizer Begins Ascent Vehicle Fueled
MIT : NED : M3 Phase 6 Unmanned Surface Habitat landed on Mars
MIT : NED : M4 Objectives –Land people on Mars and return them safely to Earth. –Effectively perform useful work on the surface of Mars. –Support people on Mars for 2 years or more without resupply. –Support people away from Earth for periods of time consistent with Mars mission durations (2 to 3 years) –Identify space transportation and surface systems consistent with objectives at affordable cost.
MIT : NED : M4 Phase 1 MTS deployed to Mars with Human Crew, Habitat, Second Ascent Vehicle, and Ground Rover
MIT : NED : M4 Phase 2 Human Crew lands on surface and positions habitats
MIT : NED : M4 Phase 3 Pressurized Rover docks with habitat
MIT : NED : M4 Phase 4 First Ascent Vehicle is used to send crew to LMO Second Ascent Vehicle is fueled and remains on Mars
MIT : NED : M4 Phase 5 Ascent Vehicle and human crew rendezvous with MTS for return trip to Earth
MIT : NED : M4 Phase 6 Crew returns to Earth Habitat and ISRU infrastructure and a fully fueled ascent vehicle are on Mars to support further, larger manned missions
MIT : NED : Technology Fission Options Option T/WPower [MW] Isp [sec]Thrust [kN]Technology status Nuclear thermal rocket/ Bimodal (NTR) Mature Nuclear Electric Propulsion (NEP) Particle-Bed/Vapor Core/Liquid Core 5-30< Materials and Radioactivity Release Concerns Fission fragment rocket >10< e63000Same as above
MIT : NED : Technology Exotic Options Option Energy sourceIsp [sec]ThrustTechnology Concerns Radioisotope poweredRadioactive isotope decay heat NMaterials cost and availability, low power Nuclear Pulse Rocket (ORION) fission Mature but forbidden by international treaties. Inertial/Magnetic/Electri c confinement fusion (ICF)/(MFC)/(EFC) fusion20,00010,000 kNrequire substantial development effort Antimatter Propulsion Concepts matter-antimatter annihilation1, ,000uncertain, potentially deployable in a distant future
MIT : NED : Epilogue In Conclusion: –4 Missions planned to be completed before 2020 –Each mission builds off technology demonstrated in previous missions –Essential Infrastructure is developed and deployed on Mars to support further human exploration