A. MacFadyen & W. Zhang (NYU), Alexandria (Magneto-) Hydrodynamics of GRB Outflows 2D Afterglow Jet Relativistic MHD Turbulence arXiv:0902.2396 arXiv:0811.3638.

Slides:



Advertisements
Similar presentations
Jets in GRBs Tsvi Piran Racah Institute of Physics, The Hebrew University Omer Bromberg, Ehud Nakar Re’em Sari, Franck Genet, Martin Obergaulinger, Eli.
Advertisements

The Science of Gamma-Ray Bursts: caution, extreme physics at play Bruce Gendre ARTEMIS.
Collaborators: Wong A. Y. L. (HKU), Huang, Y. F. (NJU), Cheng, K. S. (HKU), Lu T. (PMO), Xu M. (NJU), Wang X. (NJU), Deng W. (NJU). Gamma-ray Sky from.
Bright broad-band afterglows of gravitational wave bursts from mergers of binary neutron stars Xuefeng Wu Purple Mountain Observatory Chinese Center for.
Supernovae Supernova Remnants Gamma-Ray Bursts. Summary of Post-Main-Sequence Evolution of Stars M > 8 M sun M < 4 M sun Subsequent ignition of nuclear.
The CD Kink Instability in Magnetically Dominated Relativistic Jets * The relativistic jets associated with blazar emission from radio through TeV gamma-rays.
Formulation for the Relativistic Blast Waves Z. Lucas Uhm Research Center of MEMS Space Telescope (RCMST) & Institute for the Early Universe (IEU), Ewha.
Low-luminosity GRBs and Relativistic shock breakouts Ehud Nakar Tel Aviv University Omer Bromberg Tsvi Piran Re’em Sari 2nd EUL Workshop on Gamma-Ray Bursts.
Low-luminosity GRBs and Relativistic shock breakouts Ehud Nakar Tel Aviv University Omer Bromberg Re’em Sari Tsvi Piran GRBs in the Era of Rapid Follow-up.
Off axis counterparts of SGRBs tagged by gravitational waves Kazumi Kashiyama (Penn State) with K.Ioka, T.Nakamura and P. Meszaros.
‘Dark Side’ The ‘Dark Side’ of Gamma-Ray Bursts and Implications for Nucleosynthesis neutron capture elements (‘n-process’) light elements (spallation?)
GRB afterglows in the Non-relativistic phase Y. F. Huang Dept Astronomy, Nanjing University Tan Lu Purple Mountain Observatory.
General Relativistic Magnetohydrodynamic Simulations of Collapsars Yosuke Mizuno NSSTC, NRC fellow Collaborators K. Shibata (Kyoto Univ.), S. Yamada (Waseda.
General Relativistic MHD Simulations of Black Hole Accretion Disks John F. Hawley University of Virginia Presented at the conference on Ultra-relativistic.
Reverse Shocks and Prompt Emission Mark Bandstra Astro
Maxim Barkov University of Leeds, UK, Space Research Institute, Russia Serguei Komissarov University of Leeds, UK TexPoint fonts used in EMF. Read the.
Gamma-Ray Bursts (GRBs) and collisionless shocks Ehud Nakar Krakow Oct. 6, 2008.
GLAST Science LunchDec 1, 2005 E. do Couto e Silva 1/21 Can emission at higher energies provide insight into the physics of shocks and how the GRB inner.
How to Form Ultrarelativistic Jets Speaker: Jonathan C. McKinney, Stanford Oct 10, 2007 Chandra Symposium 2007.
Kick of neutron stars as a possible mechanism for gamma-ray bursts Yong-Feng Huang Department of Astronomy, Nanjing University.
Ehud Nakar California Institute of Technology Gamma-Ray Bursts and GLAST GLAST at UCLA May 22.
 The GRB literature has been convolved with my brain 
On Forming a Jet inside the magnetized envelope collapsing onto a black hole D. Proga.
Collapse of Massive Stars A.MacFadyen Caltech. Muller (1999) “Delayed” SN Explosion acac Accretion vs. Neutrino heating Burrows (2001)
Relativistic Explosions: AMR Hydrodynamics 1.RAM Code 2. Collapsars/GRB Central Engine 3. GRB Afterglow Blastwave A. MacFadyen (IAS, Princeton) W. Zhang.
Relativistic MHD Simulations of Relativistic Jets with RAISHIN * We have developed a new three-dimensional general relativistic magnetohydrodynamic (GRMHD)
A New Chapter in Radio Astrophysics Dale A. Frail National Radio Astronomy Observatory Gamma Ray Bursts and Their Afterglows AAS 200 th meeting, Albuquerque,
The Propagation and Eruption of Relativistic Jets from the Stellar Progenitors of Gamma-Ray Bursts W. Zhang, S. E. Woosley, & A. Heger 2004, ApJ, 608,
The Collapsar Model for Gamma-Ray Bursts S. E. Woosley (UCSC) Weiqun Zhang (UCSC) Alex Heger (Univ. Chicago) Andrew MacFadyen (Cal Tech) Harvard CfA Meeting.
Millisecond Magnetars as GRB Central Engines Todd Thompson The Ohio State University B. Metzger, N. Bucciantini, E. Quataert, P. Chang, J. Arons Thompson.
The Collapsar Model for Gamma-Ray Bursts * S. E. Woosley (UCSC) Weiqun Zhang (UCSC) Alex Heger (Univ. Chicago)
Collapsar Accretion and the Gamma-Ray Burst X-Ray Light Curve Chris Lindner Milos Milosavljevic, Sean M. Couch, Pawan Kumar.
1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.
Gamma-Ray Bursts from Magnetar Birth Brian Metzger NASA Einstein Fellow (Princeton University) In collaboration with Dimitrios Giannios (Princeton) Todd.
Neutrino Cooled Accretion Disk as the Central Engine of Gamma Ray Bursts N. Kawanaka, S. Mineshige & S. Nagataki (Yukawa Institute for Theoretical Physics)
Gamma-Ray Bursts Energy problem and beaming * Mergers versus collapsars GRB host galaxies and locations within galaxy Supernova connection Fireball model.
Gamma-Ray Bursts: Open Questions and Looking Forward Ehud Nakar Tel-Aviv University 2009 Fermi Symposium Nov. 3, 2009.
Modeling the Early Afterglow Modeling the Early Afterglow Swift and GRBs Venice, Italy, June 5-9, 2006 Chuck Dermer US Naval Research Laboratory Armen.
The Central Engine for Gamma-Ray Bursts S. E. Woosley (UCSC) Alex Heger (UCSC/Chicago) Andrew MacFadyen (UCSC/CIT) Weiqun Zhang (UCSC) Woods Hole GRB Meeting:
The effect of neutrinos on the initial fireballs in GRB ’ s Talk based on astro-ph/ (HK and Ralph Wijers) Hylke Koers NIKHEF & University of Amsterdam.
High-Energy Gamma-Rays and Physical Implication for GRBs in Fermi Era
Magnetohydrodynamic Effects in (Propagating) Relativistic Ejecta Yosuke Mizuno Center for Space Plasma and Aeronomic Research University of Alabama in.
Colliding winds in pulsar binaries S.V.Bogovalov 1, A.V.Koldoba 2,G.V.Ustugova 2, D. Khangulyan 3, F.Aharonian 3 1-National Nuclear Research University.
Dongsu Ryu (CNU), Magnetism Team in Korea
11/01/2016 Variable Galactic Gamma-Ray Sources, Heidelberg, Germany 1 Maxim Barkov MPI-K, Heidelberg, Germany Space Research Institute, Russia, University.
Hyperaccreting Disks around Neutrons Stars and Magnetars for GRBs: Neutrino Annihilation and Strong Magnetic Fields Dong Zhang (Ohio State) Zi-Gao Dai.
General Relativistic MHD Simulations of Black Hole Accretion Disks John F. Hawley University of Virginia Presented at the Astrophysical Fluid Dynamics.
Relativistic Explosions: AMR Hydrodynamics 1.RAM Code 2. Collapsars/GRB Central Engine 3. GRB Afterglow Blastwave A. MacFadyen (IAS, Princeton) W. Zhang.
Magneto-hydrodynamic Simulations of Collapsars Shin-ichiro Fujimoto (Kumamoto National College of Technology), Collaborators: Kei Kotake(NAOJ), Sho-ichi.
Toward Understanding the Central Engine of Long GRBs Kyoto University, KIPAC S. Nagataki 15 th Mar 2007, KIPAC GLAST Lunch Meeting Kinkaku-Temple, Kyoto,
GRBs CENTRAL ENGINES AS
The Vigorous Afterlife of Massive Stars Kristen Menou Institut d’Astrophysique de Paris (IAP)
July 9, 2006 Waves and Turbulence 1 Disk accretion: origin and development Nikolay Shakura Sternberg Astronomical Institute Moscow, Russia.
The prompt phase of GRBs Dimitrios Giannios Lyman Spitzer, Jr. Fellow Princeton, Department of Astrophysical Sciences Raleigh, 3/7/2011.
Formation of BH-Disk system via PopIII core collapse in full GR National Astronomical Observatory of Japan Yuichiro Sekiguchi.
The prompt optical emission in the Naked Eye Burst R. Hascoet with F. Daigne & R. Mochkovitch (Institut d’Astrophysique de Paris) Kyoto − Deciphering then.
Gamma-ray bursts Tomasz Bulik CAM K, Warsaw. Outline ● Observations: prompt gamma emission, afterglows ● Theoretical modeling ● Current challenges in.
Magnetized Shocks & Prompt GRB Emission
Modeling Astrophysical Turbulence
The signature of a wind reverse shock in GRB’s Afterglows
Convective instability of a decelerating relativistic shell: an origin of magnetic fields in the early afterglow phase? Amir Levinson, Tel Aviv University.
Particle acceleration and the microphysics of gamma-ray burst shocks
Into the Engine: GRMHD Simulations
GRB-Supernova observations: State of the art
Numerical Simulations of Relativistic Jets
Photosphere Emission in Gamma-Ray Bursts
Gamma-Ray Bursts Ehud Nakar Caltech APCTP 2007 Feb. 22.
Andrei M. Beloborodov Columbia University
Nucleosynthesis in jets from Collapsars
“Promises” of HE Neutrinos
Presentation transcript:

A. MacFadyen & W. Zhang (NYU), Alexandria (Magneto-) Hydrodynamics of GRB Outflows 2D Afterglow Jet Relativistic MHD Turbulence arXiv: arXiv:

A. MacFadyenBanff URJA 7/14/05 GRB photons are made far away from engine. Can’t observe engine directly with light. (neutrinos, gravitational waves?) Electromagnetic process or neutrino annihilation to tap power of central compact object. Hyper-accreting black hole or high field neutron star (rotating)

Relativistic Blastwave 10^52 erg eta = E/m > 100 R = 1 = 3x10^10cm n = 1 cm^-3 Blandford & McKee (1976) Г >> 1 Self similarity

Fireball Acceleration pressureГ-1 Log R AM & Zhang, Kobayashi, Piran & Sari (1999)

Required Resolution ~ 1/Г 2

Transition to Non-relativistic -3 -3/2 E = 10^52 erg n = 1 cm^-3 Log ( Г -1) Log R

Erice, J. Wheeler SchoolAndrew MacFadyen (NYU) Please see talks by: Bucciantini, McKinney & Nagataki AMR Collapsar Jet + Ni-56 rich Wind Magnetic Tower

Deceleration Relativistic E ~ Г 2 ρ R 3 Г ~ R -3/2 Jet “spreading” Г ~ 1/θ jet Newtonian E ~ v 2 ρ R 3 v 2 ~ Г-1 ~ R -3

Erice, J. Wheeler SchoolAndrew MacFadyen (NYU) Collapsar vs. Magnetar Uzdensky & AM (2007,2008)

Erice, J. Wheeler SchoolAndrew MacFadyen (NYU) Uzdensky & AM (2006,2007), Kommisarov et al (2007), Bucciantini et al (2007), Dessart et al (2007) Magnetic Tower

Relativistic GRB Jet (AMR)

Erice, J. Wheeler SchoolAndrew MacFadyen (NYU) Adaptive Mesh Refinement (AMR) - Emery Step Test

Shear Flow Resolution

Smooth & Spherical

Clumpy & Spherical

Erice, J. Wheeler SchoolAndrew MacFadyen (NYU) Vorticity Generation A ≡ (ρ 1 -ρ 2 )/(ρ 1 +ρ 2 ) ρ1ρ1 ρ2ρ2 ∇P∇P ∇ρ∇ρ η t = k[u]Aη Ultra-relativistic Vorticity and Shock Dynamics Goodman & MacFadyen (2008)

Clumpy Medium

Jet & Shear

Jet & Clumps

Flying Pancakes

Misaligned

Oblique

Colliding Clumps

Shear Patches Kelvin-Helmholtz Instability

Kelvin Helmholtz Clouds Beverly Shannon

Big Whirls Have Little Whirls Joly et al (2008)

2D Relativistic HD KH

Twisting and Folding

KH:1024^3 Rel. MHD

Mag. & Kin. Energy

Power Spectra

AG Jet Initial Conditions Blandford-McKee E iso = 1e52 erg n o = 1cm -3 Г = 23.1 Θ jet = 0.2, 0.4 Spherical R o = 1.59e17 cm R/ΔR = e10 zone equiv. R θ Г = 23.1 Text

2D GRB Blastwave

2D Blastwave (energy)

Energy Spreading

Light Curves Zhang & MacFadyen (2009)

Light Surface

Volume

A. MacFadyenJAS McGill 9/8/05 TM EOS e=0.5((9θ 2 +4) θ-2) θ≡P/ρUltrarelativistic Г=4/3 Newtonian Г=5/3 e= θ/(Г-1)

Conclusions (Mild) RMHD Turbulence has Kolmogorov-like spectrum GRB AG Jets take > 10 years to isotropize

Newton vs. Relativistic Hydro Conservation of mass momentum, energy j momentum coupled to i through Lorentz Factor Relativistic when W>1 AND/OR

A. MacFadyenIPAM UCLA 5/3/05 Method WENO 5 th order (Jiang & Shu,1996) SRHD characteristic stucture (Donat et al 1998) Runge-Kutta 3 rd order (Shu & Osher 1988) Also PLM reconstruction w/ minmod (Kurganov & Tadmor, 2000) F-WENO, F-PLM, U-PPM, U-PLM AMR from PARAMESH/FLASH2.3

Erice, J. Wheeler SchoolAndrew MacFadyen (NYU) 5 th order accuracy Method N L1 Error Convergence Rate

Alpha

CR acceleration (prelim) Zrake et al (2009)

CR acceleration (prelim) Zrake et al (2009)

A. MacFadyenNYU 1/27/06 Collapsar – Relativistic AMR (2005) rho ~ 10^9 g/cm^3 T ~ 10^10 K M_dot ~ 0.1 M_sun/s t_acc ~ 20 s R_in ~ 2 R_g AM, Zhang, Woosley (2005)

Alpha Zhang & MacFadyen (2009)

Blast Evolution Zhang & MacFadyen (2009)

Spectra Zhang & MacFadyen (2009)

2D Blastwave (density) Zhang & MacFadyen (2009)