1 COMPLETE BUSINESS STATISTICS by AMIR D. ACZEL & JAYAVEL SOUNDERPANDIAN 7 th edition. Prepared by Lloyd Jaisingh, Morehead State University.

Slides:



Advertisements
Similar presentations
COMPLETE BUSINESS STATISTICS
Advertisements

Chapter Four Parameter Estimation and Statistical Inference.
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
1 Chemical and Engineering Thermodynamics Chapter 2 Conservation of mass and energy Sandler.
布林代數的應用--- 全及項(最小項)和全或項(最大項)展開式
第七章 抽樣與抽樣分配 蒐集統計資料最常見的方式是抽查。這 牽涉到兩個問題: 抽出的樣本是否具有代表性?是否能反應出母體的特徵?
Section 1.2 Describing Distributions with Numbers 用數字描述分配.
Event Sampling 事件取樣法. 關心重點為「事件」本身明確的焦點 行為 清楚掌握主題 - 當「事件」出現時才開 始記錄 記錄程序 等待目標事件的發生 開始記錄 事件結束,停止記錄.
Chapter Two Data Summary and Presentation. Statistics II2 敘述統計 Vs. 推論統計 n 敘述統計 : 使用分析方法或圖形來描述一組來自於母 體或樣本之資料 n 推論統計 : 利用抽樣方法取得一樣本, 並針對此樣本 計算樣本統計量, 以推論未之母體之參數.
Advanced Chemical Engineering Thermodynamics
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 參 實驗法.
Stat_chi21 類別資料 (Categorical data) 一種質性資料, 其觀察值可歸類於數個不相交的項目內, 例 : 性別, 滿意度, …, 一般以各項的統計次數表現. 分析此種資料,通常用卡方檢定 類別資料分析 卡方檢定 卡方檢定基本理論 一個含有 k 項的試驗,設 p i.
全球化環境下的組織管理 本章內容 全球化的趨勢 國際化的階段 國際企業母公司對分支機構的管理取向 國際企業組織的結構設計 Chapter 6
©Ming-chi Chen 社會統計 Page.1 社會統計 第十講 相關與共變. ©Ming-chi Chen 社會統計 Page.2 Covariance, 共變量 當 X, Y 兩隨機變數不互為獨立時,表示 兩者間有關連。其關連的形式有很多種, 最常見的關連為線性的共變關係。 隨機變數 X,Y.
Section 2.3 Least-Squares Regression 最小平方迴歸
STAT0_sampling Random Sampling  母體: Finite population & Infinity population  由一大小為 N 的有限母體中抽出一樣本數為 n 的樣 本,若每一樣本被抽出的機率是一樣的,這樣本稱 為隨機樣本 (random sample)
第 4 章 迴歸的同步推論與其他主題.
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
STAT0_corr1 二變數的相關性  變數之間的關係是統計研究上的一大目標  討論二分類變數的相關性,以列聯表來表示  討論二連續隨機變數時,可以作 x-y 散佈圖觀察它 們的關係強度  以相關係數來代表二者關係的強度.
Quantitative Data Analysis Social Research Methods 2109 & 6507 Spring, 2006 March
Section 2.2 Correlation 相關係數. 散佈圖 1 散佈圖 2 散佈圖的盲點 兩座標軸的刻度不同,散佈圖的外觀呈 現的相聯性強度,會有不同的感受。 散佈圖 2 相聯性看起來比散佈圖 1 來得強。 以統計數字相關係數做為客觀標準。
Part 1 Understanding Data Chapter 1 Examining Distributions Chapter 2 Examining Relationships Chapter 3 Producing Data.
第二章 統計圖表.
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
基礎物理總論 基礎物理總論 熱力學與統計力學(三) Statistical Mechanics 東海大學物理系 施奇廷.
CH22 可靠性加速測試方法 目的 基本假設 加速試驗模式 Inverse Power Model
03/05/2003 Week #2 江支弘 Measuring Center or Average 量度中心或平均 Stemplot: Mean: 平均數 arithmetic average of observations Median: 中位數 middle value of... (in increasing.
第 3 章 敘述統計II:數值方法.
1 Part IC. Descriptive Statistics Multivariate Statistics ( 多變量統計 ) Focus: Multiple Regression ( 多元迴歸、複迴歸 ) Spring 2007.
1 Introduction to Chemical Engineering Thermodynamics Chapter 5 The second law of thermodynamics Smith.
2009fallStat_samplec.i.1 Chap10 Sampling distribution (review) 樣本必須是隨機樣本 (random sample) ,才能代表母體 Sample mean 是一隨機變數,隨著每一次抽出來的 樣本值不同,它的值也不同,但會有規律性 為了要知道估計的精確性,必需要知道樣本平均數.
民意調查的分析 II 蔡佳泓 政大選舉研究中心 副研究員. 課程大綱 假設的檢定 研究假設 H1: 研究假設 ( 例: X 與 Y 相關 ) H0: 虛無假設 ( 例: X 與 Y 無關 ) 檢定結果:接受虛無假設或拒斥虛無假 設,但不代表接受研究假設.
信度.
© The McGraw-Hill Companies, Inc., 2008 第 6 章 製造流程的選擇與設計.
1 第四章 多變數函數的微分學 § 4.1 偏導數定義 定義 極限值 ■. 2 定理 極限值的基本定理 (1) 極限值的唯一性 : 若 存在,則 其值必為唯一。 (2) 若 且 ( 與 為常數 ) , 則 且 為常數且.
錄音筆,MP3 撥放器, 隨身碟 之原理及規格. 定義 錄音筆 – 以錄音為首要功能 MP3 撥放器 – 以播放音樂為首要功能 隨身碟 – 以行動碟為功能.
Ch05 確定研究變項.
選舉制度、政府結構與政 黨體系 Cox (1997) Electoral institutions, cleavage strucuters, and the number of parties.
緒論 統計的範圍 敘述統計 推論統計 有母數統計 無母數統計 實驗設計 統計的本質 大量 數字 客觀.
1 Excel 講授內容 ( 進階 ) 授課教師 : 吳槐桂 最後更新 : 2008/05/01.
Analysis of Variance (ANOVA) CH 13 變異數分析. What is ANOVA? n 檢定 3 個或 3 個以上的母體平均數是否相等的統計檢定 n 檢定多個母體平均數是否相同 n 比較大二、大三、大四學生實習滿意度是否一樣 ? ( 來 自相同的 population)
第七章 連續機率分配.
觀測量的權 權的觀念與計算.
Section 4.2 Probability Models 機率模式. 由實驗看機率 實驗前先列出所有可能的實驗結果。 – 擲銅板:正面或反面。 – 擲骰子: 1~6 點。 – 擲骰子兩顆: (1,1),(1,2),(1,3),… 等 36 種。 決定每一個可能的實驗結果發生機率。 – 實驗後所有的實驗結果整理得到。
演算法 8-1 最大數及最小數找法 8-2 排序 8-3 二元搜尋法.
Structural Equation Modeling Chapter 6 CFA 根據每個因素有多重指標,以減少 測量誤差並可建立問卷的構念效度 驗證性因素分析.
Chapter 10 m-way 搜尋樹與B-Tree
民意調查的分析 I 蔡佳泓 政大選舉研究中心 副研究員. 課程大綱 名目變數之描述性統 計 連續變數之描述性統 計 順序變數.
03/05/2003 Week #2 江支弘 Chapter Two Describing, Displaying, and Exploring Statistical Data.
Chapter 7 Sampling Distribution
Chapter 2 Frequency Distributions 次數分配
Ch10 運用態度量表蒐集資料.
Cluster Analysis 目的 – 將資料分成幾個相異性最大的群組 基本問題 – 如何衡量事務之間的相似性 – 如何將相似的資料歸入同一群組 – 如何解釋群組的特性.
Chapter 6 Introduction to Inference 推論簡介. Chapter 6 Introduction to Inference 6.1 Estimating with Confidence 6.2 Tests of Significance 6.3 Making Sense.
行銷研究 單元七 態度的衡量. 態度 (attitude) 的涵義  態度的衡量 認知 :如,毒品有害健康 情感 :如,我不喜歡吸毒的人 行為 :如,我不吸毒.
Ch 3 Central Tendency 中央集中趨勢測量.
連續隨機變數 連續變數:時間、分數、重量、……
第八章 估計.
統計緒論 _ Chap2 資料整理 2.1 基本的資料整理  排序,例: length of 60 sea trouts ( 課本 p13 ) ( 可用 EXCEL)  長條圖,例 2.1 number of times of delay in a week for the 48 flights.
Ch05 確定研究變項.
財務管理概論 劉亞秋‧薛立言 合著 (東華書局, 2007)
1 Chemical and Engineering Thermodynamics Chapter 1 Introduction Sandler.
Chapter 12 Estimation 統計估計. Inferential statistics Parametric statistics 母數統計 ( 母體為常態或 大樣本 ) 假設檢定 hypothesis testing  對有關母體參數的假設,利用樣本資料,決定接受或 不接受該假設的方法.
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
Statistics for Education Research Statistics for Education Research Lecture 1 Scales/Graph/Central Tendency Instructor: Dr. Tung-hsien He
1 Pertemuan 4 Statistik Deskriptif-2 Matakuliah: A0064 / Statistik Ekonomi Tahun: 2005 Versi: 1/1.
COMPLETE BUSINESS STATISTICS
Pendahuluan Pertemuan 1
Presentation transcript:

1 COMPLETE BUSINESS STATISTICS by AMIR D. ACZEL & JAYAVEL SOUNDERPANDIAN 7 th edition. Prepared by Lloyd Jaisingh, Morehead State University

2 Using Statistics 使用統計 Percentiles and Quartiles 百分位數與四分位數 Measures of Central Tendency 集中傾向之衡量 Measures of Variability 變異性之衡量 Grouped Data and the Histogram 群聚數據與直方圖 Skewness and Kurtosis 偏態與峰態 Relations between the Mean and Standard Deviation Methods of Displaying Data Exploratory Data Analysis 探索性資料分析 Using the Computer 使用電腦 Introduction and Descriptive Statistics 1

3 Distinguish between qualitative data and quantitative data. Describe nominal, ordinal, interval, and ratio scales of measurements. Describe the difference between population and sample. Calculate and interpret percentiles and quartiles. Explain measures of central tendency and how to compute them. Create different types of charts that describe data sets. Use Excel templates to compute various measures and create charts. LEARNING OBJECTIVES After studying this chapter, you should be able to:

4 Statistics is a science that helps us make better decisions in business and economics as well as in other fields. Statistics teaches us how to summarize, analyze, and draw meaningful inferences from data that then lead to improve decisions. These decisions that we make help us improve the running, for example, a department, a company, the entire economy, etc. WHAT IS STATISTICS ?

Using Statistics (Two Categories) l Inferential Statistics 推論統計 Predict and forecast values of population parameters Test hypotheses about values of population parameters Make decisions l Descriptive Statistics 敘述統計 Collect Organize Summarize Display Analyze

6 l Qualitative 定性 - Categorical or Nominal: Examples are- Color 顏色 Gender 性別 Nationality 國籍 Quantitative 定量 - Measurable or Countable: Examples are- Temperatures 溫度 Salaries 薪水 Number of points scored on a 100 point exam Types of Data - Two Types (p.4)

7 Scales of Measurement (p.4-5) 衡量尺度定 義特 色 可衡量變數 名目尺度 用以辨識或歸 類個案之數值 (1) 僅名目本身有意義,數字大小無意義。 (2) 是層級最低之尺度,無法轉換為其他尺度。 (3) 僅能命名,不能排序。 性別、職業、 居住區域、身 分證碼、學號 等。 順序尺度 用以表示等級 或順序之數值 (1) 只能指出等級或順序,但無法衡量等級間之差異程度。 (2) 可降低為名目尺度。 (3) 僅能排序,不能加減。 名次、排序、 百分位序等。 區間尺度 用以表示程度 上差異之數值 (1) 具任意原點, 0 不代表「無」。 (2) 可降低為順序尺度及名目尺度。 (3) 僅能加減,不能乘除。 溫度、態度、 滿意度、同意 度、重要性等。 比率尺度 用以衡量實質 上差異之數值 (1) 具絕對原點, 0 代表「無」 。 (2) 可降低為區間尺度順序尺度及名目尺度等。 (3) 能乘除。 所得、銷售額、 考試分數、玉 米收穫量等。 Categorical or nonmertric type Nominal scale ( 名目尺度 ) Ordinal scale ( 順序尺度 ) Analytical or metric type Interval scale ( 區間尺度 ) Ratio scale ( 比率尺度 )

8 A population( 母體 ) consists of the set of all measurements for which the investigator is interested. A sample( 樣本 ) is a subset of the measurements selected from the population. l A census( 普查 ) is a complete enumeration of every item in a population. Samples and Populations( 樣本與母體 ) P.5

9 Sampling( 抽樣 ) from the population is often done randomly( 隨機 ), such that every possible sample of equal size (n) will have an equal chance of being selected. l A sample selected in this way is called a simple random sample or just a random sample. l A random sample allows chance to determine its elements. Simple Random Sample

10 Population (N)Sample (n) Samples and Populations

11 Census( 普查 ) of a population may be: Impossible( 不可能 ) Impractical( 不實際 ) Too costly( 成本高 ) Why Sample?

12 Exercise (p.8, 5min)

13 l Given any set of numerical observations, order them according to magnitude. The P th percentile in the ordered( 已排序 ) set is that value below which lie P% (P percent) of the observations in the set. l The position of the P th percentile is given by (n + 1)P/100, where n is the number of observations in the set. 1-2 Percentiles( 百分位數 ) and Quartiles( 四分位數 )

14 20 A large department store collects data on sales made by each of its salespeople. The number of sales made on a given day by each of 20 salespeople is shown on the next slide. Also, the data has been sorted in magnitude. Example 1-2 (p.9)

15 Example 1-2 (Continued) - Sales and Sorted Sales Sales Sorted Sales

16 l Find the 50th, 80th, and the 90th percentiles of this data set. l To find the 50th percentile, determine the data point in position (n + 1)P/100 = (20 + 1)(50/100) = l Thus, the percentile is located at the 10.5th position. l The 10th observation is 16, and the 11th observation is also 16. l The 50th percentile will lie halfway between the 10th and 11th values and is thus 16. Example 1-2 (Continued) Percentiles

17 l To find the 80th percentile, determine the data point in position (n + 1)P/100 = (20 + 1)(80/100) = l Thus, the percentile is located at the 16.8th position. l The 16th observation is 19, and the 17th observation is also 20. l The 80th percentile is a point lying 0.8 of the way from 19 to 20 and is thus Example 1-2 (Continued) Percentiles

18 l To find the 90th percentile, determine the data point in position (n + 1)P/100 = (20 + 1)(90/100) = l Thus, the percentile is located at the 18.9th position. l The 18th observation is 21, and the 19th observation is also 22. l The 90th percentile is a point lying 0.9 of the way from 21 to 22 and is thus Example 1-2 (Continued) Percentiles Example 1-2

19 Quartiles( 四分位數 ) are the percentage points that break down the ordered data set into quarters. l The first quartile is the 25th percentile. It is the point below which lie 1/4 of the data. l The second quartile is the 50th percentile. It is the point below which lie 1/2 of the data. This is also called the median( 中位數 ). l The third quartile is the 75th percentile. It is the point below which lie 3/4 of the data. Quartiles – Special Percentiles( 特殊百分 位數,p.10 )

20 l The first quartile, Q 1, (25th percentile) is often called the lower quartile( 下四分位數 ). l The second quartile, Q 2, (50 th percentile) is often called median or the middle quartile( 中四分位數 ). l The third quartile, Q 3, (75th percentile) is often called the upper quartile( 上四分位數 ). l The interquartile range( 四分位數間距 ) is the difference between the first and the third quartiles. Quartiles and Interquartile Range

21 SortedSales First Quartile Median Third Quartile (n+1)P/100 (20+1)25/100=5.25 (20+1)50/100=10.5 (20+1)75/100= (.25)(1) = (.5)(0) = (.75)(1) = Quartiles Example 1-3: Finding Quartiles Position (16-16) Basic Stat.xls

22 Example 1-3: Using the Template

23 Example 1-3 (Continued): Using the Template This is the lower part of the same template from the previous slide.

24 Exercise, p.11, 10 min 1-9(Ans : Q1=9, Q2=11.6, Q3=15.5, 55%=12.32, 85%=16.5) 1-12(Ans : median=51, Q1=30.5, Q3= IQR=163.75, 45%=42.2) Basic Stat.xls P %= (n+1)P / 100

25 Measures of Variability( 衡量變異 性 ) Range 全距 Interquartile range 四分位間距 Variance 變異數 Standard Deviation 標準差 l Measures of Central Tendency( 衡量集中傾向 ) Median 中位數 Mode 眾數 Mean 平均數 l Other summary measures: 其他 Skewness 偏態 Kurtosis 峰態 Summary Measures: Population Parameters Sample Statistics

26  Median 中位數 â Middle value when sorted in order of magnitude â 50th percentile  Mode 眾數 â Most frequently- occurring value  Mean 平均數 â Average 1-3 Measures of Central Tendency or Location(p.11)

27 SalesSorted Sales Median 50th Percentile (20+1)50/100= (.5)(0) = 16 The median is the middle value of data sorted in order of magnitude. It is the 50 th percentile. Example – Median (Data is used from Example 1-2) See slide # 19 for the template output

:. : : : :. : : : Mode = 16 The mode is the most frequently occurring value. It is the value with the highest frequency. Example - Mode (Data is used from Example 1-2) See slide # 19 for the template output

29 The mean( 平均數 ) of a set of observations is their average - the sum of the observed values divided by the number of observations. Population Mean 母體平均數 Sample Mean 樣本平均數    x N i N 1 Arithmetic Mean or Average x x n i n    1 n

30 x x n i n    Sale s Example – Mean (Data is used from Example 1-2) See slide # 19 for the template output

:. : : : :. : : : Median and Mode = 16 Mean = Example - Mode (Data is used from Example 1-2) See slide # 19 for the template output 每一點代表一個數值

32 Exercise, p.15, 5 min 例 ~ 1-16 (See Textbook p.656) 1-17 (Ans : mean=18.34, median=19.1)

33 l Range 全距 Difference between maximum and minimum values Interquartile Range 四分位數間距 Difference between third and first quartile (Q 3 - Q 1 ) Variance 變異數 Average * of the squared deviations from the mean l Standard Deviation 標準差 Square root of the variance   Definitions of population variance and sample variance differ slightly. 1-4 Measures of Variability or Dispersion (p.15)

34 Sorted SalesSalesRank First Quartile Third Quartile Q 1 = 13 + (.25)(1) = Q 3 = 18+ (.75)(1) = Minimum Maximum Range Maximum - Minimum = = 18 Interquartile Range Q3 - Q1 = = 5.5 Example - Range and Interquartile Range (Data is used from Example 1-2)

35 ( )                ()x N x N N i N i N x i N Population Variance 母體變異數     s xx n x x n n s s i n i n i n              () Sample Variance 樣本變異數 Variance and Standard Deviation ( )

36 公式證明

Calculation of Sample Variance

38 Example: Sample Variance Using the Template Note: This is just a replication of slide #19.

39 Exercise, p.22, 10 min 標準差之計算 - 例 1- 5, 1- 6 (p.20) 或例 (p.22) 1-19 (Ans. Range=27, , ) 1-20 (Ans. Range=60, , ) 1-21 (Ans. Range=1186, , ) Basic Stat.xls

40 l Dividing data into groups or classes or intervals l Groups should be: Mutually exclusive 群間互斥 Not overlapping - every observation is assigned to only one group Exhaustive 完全分群 Every observation is assigned to a group Equal-width (if possible) 等寬 First or last group may be open-ended 1-5 Group Data and the Histogram 群聚數據與直方圖

41 Table with two columns 兩行 listing: Each and every group or class or interval of values Associated frequency of each group Number of observations assigned to each group Sum of frequencies is number of observations –N for population –n for sample Class midpoint 組中點 is the middle value of a group or class or interval Relative frequency 相對頻率 is the percentage of total observations in each class Sum of relative frequencies = 1 Frequency Distribution 頻率分配

42 xf(x)f(x)/n Spending Class ($)Frequency (number of customers) Relative Frequency 0 to less than to less than to less than to less than to less than to less than xf(x)f(x)/n Spending Class ($)Frequency (number of customers) Relative Frequency 0 to less than to less than to less than to less than to less than to less than Example of relative frequency: 30/184 = Sum of relative frequencies = 1 Example 1-7: Frequency Distribution p.23

43 x F(x) F(x)/n Spending Class ($)Cumulative Frequency Cumulative Relative Frequency 0 to less than to less than to less than to less than to less than to less than x F(x) F(x)/n Spending Class ($)Cumulative Frequency Cumulative Relative Frequency 0 to less than to less than to less than to less than to less than to less than cumulative frequency 累積頻率 The cumulative frequency 累積頻率 of each group is the sum of the frequencies of that and all preceding groups. cumulative frequency 累積頻率 The cumulative frequency 累積頻率 of each group is the sum of the frequencies of that and all preceding groups. Cumulative Frequency Distribution

44 頻率分配圖練習, 10 min 例 1- (p.25), 以 5 為距離 Basic Stat.xls

45 histogram A histogram is a chart made of bars of different heights. 不同高度之條狀圖 Widths and locations of bars correspond to widths and locations of data groupings 寬度與 位置代表群組的資料寬度與位置 Heights of bars correspond to frequencies or relative frequencies of data groupings 高度代 表頻率 Histogram 直方圖

46 Frequency Histogram Histogram Example : 1-7

47 Relative Frequency Histogram Histogram Example

48 l Skewness –Measure of asymmetry of a frequency distribution Skewed to left 左偏 <0 Symmetric or unskewed 對稱 Skewed to right 右偏 >0 l Kurtosis –Measure of flatness or peakedness of a frequency distribution Platykurtic (relatively flat) Mesokurtic (normal) Leptokurtic (relatively peaked) * 公示如 p Skewness 偏度 and Kurtosis 峰度 p.25

49 Skewed to left Skewness 偏度值 -, 越左偏

50 Skewness Symmetric

51 Skewness Skewed to right 偏度值 +, 越右偏

52 Kurtosis Platykurtic 平扁 - flat distribution 扁度值越小, 越平扁

53 Kurtosis Mesokurtic - not too flat and not too peaked

54 Kurtosis Leptokurtic 尖扁 - peaked distribution 扁度值越大, 越尖突

55 Chebyshev’s Theorem 柴比雪夫定理 Applies to any distribution, regardless of shape 可應用 於任何分配之數據 Places lower limits on the percentages of observations within a given number of standard deviations from the mean Empirical Rule r 經驗法則 Applies only to roughly mound-shaped and symmetric distributions 適用山型與對稱之數據 Specifies approximate percentages of observations within a given number of standard deviations from the mean 1-7 Relations between the Mean and Standard Deviation p.27 ( 重要 )

56 l At least of the elements of any distribution lie within k standard deviations of the mean At least Lie within Standard deviations of the mean Chebyshev’s Theorem

57 l For roughly mound-shaped and symmetric distributions, approximately: Empirical Rule 經驗法則

58 Exercise, p.28, 10 min Exercise Basic Stat.xls

59 Pie Charts 圓餅圖 Categories represented as percentages of total Bar Graphs 直條圖 Heights of rectangles represent group frequencies Frequency Polygons 頻率圖 Height of line represents frequency Ogives 累加頻率圖 Height of line represents cumulative frequency Time Plots 時間圖 Represents values over time 1-8 Methods of Displaying Data

60 Pie Chart

61 Bar Chart Average Revenues Average Expenses Fig Airline Operating Expenses and Revenues Airline AmericanContinentalDeltaNorthwestSouthwestUnitedUSAir

62 Relative Frequency Polygon Ogive Frequency Polygon and Ogive Relative Frequency Sales Cumulative Relative Frequency Sales

63 Time Plot

64 圖形練習, 10 min xls 1-25.xls

65 Stem-and-Leaf Displays 莖葉 Quick-and-dirty listing of all observations 快速瀏覽所有觀測值 Conveys some of the same information as a histogram 將資料轉化 成直方圖 Box Plots 盒形圖 Median Lower and upper quartiles Maximum and minimum Techniques to determine relationships 關係 and trends 趨勢, identify outliers 離群值 and influential 有影響的 observations, and quickly describe 快速描述 or summarize 總結 data sets. 1-9 Exploratory Data Analysis – EDA 探 索性資料分析

(10 ~) (20 ~) (30 ~) (40 ~) (50 ~) 6 02 (60 ~) (10 ~) (20 ~) (30 ~) (40 ~) (50 ~) 6 02 (60 ~) Example 1-8: Stem-and-Leaf Display

67 XX *o Median Q1Q1 Q3Q3 Inner Fence Inner Fence Outer Fence Outer Fence Interquartile Range Smallest data point not below inner fence Largest data point not exceeding inner fence Suspected outlier Outlier Q 1 -3(IQR) Q (IQR)Q (IQR) Q 3 +3(IQR) Elements of a Box Plot Box Plot 盒形圖 離群值 IQR 一半數據在盒內

68 Example: Box Plot

69 Exercise, p.39, 15 min BoxPlot.xls

Using the Computer – The Template Output

71 Using the Computer – Template Output for the Histogram

72 Using the Computer – Template Output for Histograms for Grouped Data

73 Using the Computer – Template Output for Frequency Polygons & the Ogive for Grouped Data

74 Using the Computer – Template Output for Two Frequency Polygons for Grouped Data

75 Using the Computer – Pie Chart Template Output

76 Using the Computer – Bar Chart Template Output

77 Using the Computer – Box Plot Template Output

78 Using the Computer – Box Plot Template to Compare Two Data Sets

79 Using the Computer – Time Plot Template

80 Using the Computer – Time Plot Comparison Template