Chemical Kinetics The area of chemistry that concerns reaction rates and reaction mechanisms.

Slides:



Advertisements
Similar presentations
Chemical Kinetics The area of chemistry that concerns reaction rates and reaction mechanisms.
Advertisements

Chemical Kinetics Reaction rate - the change in concentration of reactant or product per unit time.
Rates and Rate Laws.
Reaction Energy and Reaction Kinetics
Chapter 14 Chemical Kinetics In kinetics we study the rate at which a chemical process occurs. Lecture Presentation © 2012 Pearson Education, Inc.
Chpt 12 - Chemical Kinetics Reaction Rates Rate Laws Reaction Mechanisms Collision Theory Catalysis HW: Chpt 12 - pg , #s Due Fri Jan. 8.
Elementary Chemical Kinetics ( )
Chapter 13 Chemical Kinetics
Ch. 15 Kinetics Exam Review.
Chemical Kinetics Unit 11.
Chemistry 40S Unit 3: Chemical Kinetics Lesson 4.
Chapter 13: Chemical Kinetics CHE 124: General Chemistry II Dr. Jerome Williams, Ph.D. Saint Leo University.
Chapter 14: Rates of Reaction Chemistry 1062: Principles of Chemistry II Andy Aspaas, Instructor.
Chemical Kinetics The area of chemistry that concerns reaction rates and reaction mechanisms.
AP Chemistry – Chemical Kinetics Black powder burns quickly, but the reaction is much slower than nitroglycerin detonating. 4 C 3 H 5 (NO 3 ) 3 → 12 CO.
Rate Law 5-2 an expression which relates the rate to the concentrations and a specific rate constant.
Rate Orders and Rate Laws. Reaction Rates Are measured as the change in concentration over time. ∆[reactants] Are measured as the change in concentration.
Chemical Kinetics The area of chemistry that concerns reaction rates and reaction mechanisms.
Chemical Kinetics Kinetics: The Study of the rate of chemical reactions Thermodynamics: The study of the energy associated with chemical reactions Remember:
Rate Laws Chapter 14 part II Rate Laws Chemical reactions are reversible. So far we have only considered the forward reaction in our rates. Eventually.
Chapter 12 Chemical Kinetics. Section 12.2 Atomic MassesRate Laws: An Introduction Return to TOC Determining Rates Using The Initial Rate Method As a.
1 Chemical Kinetics The area of chemistry that concerns reaction rates. The area of chemistry that concerns reaction rates.
Chemical Kinetics The area of chemistry that concerns reaction rates and reaction mechanisms.
What is this?. Kinetics Reaction Rates: How fast reactions occur.
The Rate Law. Objectives: To understand what a rate law is To determine the overall reaction order from a rate law CLE
Dr. Harris Lecture 18 HW: Ch 17: 5, 11, 18, 23, 41, 50 Ch 17: Kinetics Pt 1.
REACTION RATE LAWS MRS. NIELSEN HONORS CHEMISTRY.
TOPIC C: REACTION MECHANISMS. Mechanism - the sequence of elementary steps that make up a chemical reaction Each step will be relatively fast or relatively.
Chemical Kinetics By: Ms. Buroker. Chemical Kinetics Spontaneity is important in determining if a reaction occurs- but it doesn’t tell us much about the.
AH Chemistry – Unit 1 Kinetics. How fast does it go? Thermodynamics Is the reaction feasible? How far will the reaction go? Thermodynamics is about start.
Chemical Kinetics Chapter 13 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Reaction Rates and Stoichiometry In general, for the reaction aA + bB → cC + dD Rate = - (1/a)Δ[A]/Δt = - (1/b)Δ[B]/Δt = (1/c) Δ[C] /Δt.
The Rate of Chemical Reactions – The Rate Law.
Kinetics Chemistry. Kinetics Study of reaction rates How fast does it happen? What variables influence the rate? What is the path the reaction takes to.
Reaction Rates Measures concentration (molarity!) change over time Measures concentration (molarity!) change over time Example: Example: 2H 2 O 2  2H.
Kinetics Cartoon courtesy of NearingZero.net ©2011 University of Illinois Board of Trustees
Chemical Kinetics Nancy Griffeth January 8, 2014 Funding for this workshop was provided by the program “Computational Modeling and Analysis of Complex.
1Chemistry 2C Lecture 20: May 17 th, )Introduction to Kinetics 2)Rate Laws 3)Orders and Reaction Constants 4)Initial Slopes 5)Zero th order reactions.
WARM UP “Let us move on and step out boldly, though it be into the night, and we can scarcely see the way.” - Charles B. Newcomb 1)What does this mean.
*Measuring how fast reactions occur. Lecture 2: Stoichiometry & Rate Laws.
Chemical Kinetics © 2009, Prentice-Hall, Inc. Reaction Rates and Stoichiometry In this reaction, the ratio of C 4 H 9 Cl to C 4 H 9 OH is 1:1. Thus, the.
Kinetics. In kinetics we study the rate at which a chemical process occurs. Besides information about the speed at which reactions occur, kinetics also.
16.1 Rate Expression. Assessment Statements Distinguish between the terms rate constant, overall order of reaction and order of reaction with respect.
Chemical Kinetics The area of chemistry that concerns reaction rates and reaction mechanisms.
CHEMICAL KINETICS  Principally interested in… The rate of a chemical reaction The factors that influence the rate The mechanism by which a reaction takes.
Chapter 5 Rates of Chemical Reaction. 5-1 Rates and Mechanisms of Chemical Reactions 5-2 Theories of Reaction Rate 5-3 Reaction Rates and Concentrations.
DIFFERENTIAL RATE LAW A few things first… Reactions are reversible and the reverse reaction is important. When the rate of the forward reaction equals.
Chapter 13 Chemical Kinetics CHEMISTRY. Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of.
Chapter 12 - Kinetics DE Chemistry Dr. Walker.
Introduction to Reaction Rates
Rates and Rate Laws.
Chemical Kinetics Chapter 12.
Chemical Kinetics The area of chemistry that concerns reaction rates and reaction mechanisms.
Rates and Rate Laws.
Chemical Kinetics What do we know about chemical reactions?
Progress of Chemical Reactions
Introduction to Reaction Rates
Chemical Kinetics Method of Initial Rates
Rates and Rate Laws.
Experimental Rate Laws
Reaction Rate Change in concentration of a reactant or product per unit time. [A] means concentration of A in mol/L; A is the reactant or product being.
Chapter 12 Chemical Kinetics.
Unit 3: Chemical Kinetics
Kinetics Lesson # 3 Rate Law.
Chemical Kinetics and the Nucleus, a Chemist’s View
Unit 4: Solutions and Kinetics
Chapter 12 Chemical Kinetics.
Rate Law p
Rate Laws How rate laws are determined ALWAYS experimentally
Calculating Reaction Rates. Mechanism: Change in concentration
Presentation transcript:

Chemical Kinetics The area of chemistry that concerns reaction rates and reaction mechanisms.

Reaction Rate The change in concentration of a reactant or product per unit of time

2NO 2 (g)  2NO(g) + O 2 (g) Reaction Rates: 2. Can measure appearance of products 1. Can measure disappearance of reactants 3. Are proportional stoichiometrically

2NO 2 (g)  2NO(g) + O 2 (g) Reaction Rates: 4. Are equal to the slope tangent to that point  [NO 2 ] tt 5. Change as the reaction proceeds, if the rate is dependent upon concentration

Rate Laws Differential rate laws express (reveal) the relationship between the concentration of reactants and the rate of the reaction. Integrated rate laws express (reveal) the relationship between concentration of reactants and time The differential rate law is usually just called “the rate law.”

Writing a (differential) Rate Law 2 NO(g) + Cl 2 (g)  2 NOCl(g) Problem - Write the rate law, determine the value of the rate constant, k, and the overall order for the following reaction: Experiment[NO](mol/L) [Cl 2 ] (mol/L)RateMol/L·s x x x x 10 -6

Writing a Rate Law Part 1 – Determine the values for the exponents in the rate law: Experiment[NO](mol/L) [Cl 2 ] (mol/L)RateMol/L·s x x x x In experiment 1 and 2, [Cl 2 ] is constant while [NO] doubles. R = k[NO] x [Cl 2 ] y The rate quadruples, so the reaction is second order with respect to [NO]  R = k[NO] 2 [Cl 2 ] y

Writing a Rate Law Part 1 – Determine the values for the exponents in the rate law: Experiment[NO](mol/L) [Cl 2 ] (mol/L)RateMol/L·s x x x x R = k[NO] 2 [Cl 2 ] y In experiment 2 and 4, [NO] is constant while [Cl 2 ] doubles. The rate doubles, so the reaction is first order with respect to [Cl 2 ]  R = k[NO] 2 [Cl 2 ]

Writing a Rate Law Part 2 – Determine the value for k, the rate constant, by using any set of experimental data: Experiment[NO](mol/L) [Cl 2 ] (mol/L)RateMol/L·s x R = k[NO] 2 [Cl 2 ]

Writing a Rate Law Part 2 – Determine the value for k, the rate constant, by using any set of experimental data: Experiment[NO](mol/L) [Cl 2 ] (mol/L)RateMol/L·s x R = k[NO] 2 [Cl 2 ]

Writing a Rate Law Part 3 – Determine the overall order for the reaction. R = k[NO] 2 [Cl 2 ] Overall order is the sum of the exponents, or orders, of the reactants 2+1 = 3  The reaction is 3 rd order