CIRCUITS and SYSTEMS – part II Prof. dr hab. Stanisław Osowski Electrical Engineering (B.Sc.) Projekt współfinansowany przez Unię Europejską w ramach Europejskiego.

Slides:



Advertisements
Similar presentations
Previous Lectures Source free RL and RC Circuits.
Advertisements

Differential Equations
Ch3 Basic RL and RC Circuits
THE LAPLACE TRANSFORM IN CIRCUIT ANALYSIS
ECE201 Lect-201 First-Order Circuits Cont’d Dr. Holbert April 17, 2006.
Series RLC Network An example on how to solve for A 1 and A 2.
Applications of Laplace Transforms Instructor: Chia-Ming Tsai Electronics Engineering National Chiao Tung University Hsinchu, Taiwan, R.O.C.
E E 2315 Lecture 10 Natural and Step Responses of RL and RC Circuits.
Transient Analysis DC Steady-State ELEC 308 Elements of Electrical Engineering Dr. Ron Hayne Images Courtesy of Allan Hambley and Prentice-Hall.
Department of Electronic Engineering BASIC ELECTRONIC ENGINEERING Transients Analysis.
2nd Order Circuits Lecture 16.
Lecture 171 Higher Order Circuits. Lecture 172 Higher Order Circuits The text has a chapter on 1st order circuits and a chapter on 2nd order circuits.
First Order Circuit Capacitors and inductors RC and RL circuits.
Lecture 10: RL & RC Circuits Nilsson 7.1 – 7.4
Lecture 181 Second-Order Circuits (6.3) Prof. Phillips April 7, 2003.
Department of Electronic Engineering BASIC ELECTRONIC ENGINEERING Transients Analysis.
Feb 23, 2007 EEE393 Basic Electrical Engineering K.A.Peker Signals and Systems Introduction EEE393 Basic Electrical Engineering.
ES250: Electrical Science
Chapter 4 Transients.
Autumn 2008 EEE8013 Revision lecture 1 Ordinary Differential Equations.
EENG 2610: Circuit Analysis Class 12: First-Order Circuits
1 Circuit Theory Chapter 7 First-Order Circuits Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
ES250: Electrical Science
ELECTRICA L ENGINEERING Principles and Applications SECOND EDITION ALLAN R. HAMBLEY ©2002 Prentice-Hall, Inc. Chapter 4 Transients Chapter 4 Transients.
305221, Computer Electrical Circuit Analysis การวิเคราะห์วงจรไฟฟ้าทาง คอมพิวเตอร์ 3(2-3-6) ณรงค์ชัย มุ่งแฝงกลาง คมกริช มาเที่ยง สัปดาห์ที่ 10 Frequency.
CIRCUITS and SYSTEMS – part I Prof. dr hab. Stanisław Osowski Electrical Engineering (B.Sc.) Projekt współfinansowany przez Unię Europejską w ramach Europejskiego.
CIRCUITS and SYSTEMS – part I Prof. dr hab. Stanisław Osowski Electrical Engineering (B.Sc.) Projekt współfinansowany przez Unię Europejską w ramach Europejskiego.
Fundamentals of Electric Circuits Chapter 16 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chapter 4 Transients. 1.Solve first-order RC or RL circuits. 2. Understand the concepts of transient response and steady-state response.
CIRCUITS and SYSTEMS – part I
CIRCUITS and SYSTEMS – part I Prof. dr hab. Stanisław Osowski Electrical Engineering (B.Sc.) Projekt współfinansowany przez Unię Europejską w ramach Europejskiego.
CIRCUITS and SYSTEMS – part II Prof. dr hab. Stanisław Osowski Electrical Engineering (B.Sc.) Projekt współfinansowany przez Unię Europejską w ramach Europejskiego.
Motivation Thus far we have dealt primarily with the input/output characteristics of linear systems. State variable, or state space, representations describe.
Feedback Control Systems (FCS) Dr. Imtiaz Hussain URL :
1 G. Baribaud/AB-BDI Digital Signal Processing March 2003 DISP-2003 The Laplace transform  The linear system concept  The definition and the properties.
CIRCUITS and SYSTEMS – part II Prof. dr hab. Stanisław Osowski Electrical Engineering (B.Sc.) Projekt współfinansowany przez Unię Europejską w ramach Europejskiego.
Net work analysis Dr. Sumrit Hungsasutra Text : Basic Circuit Theory, Charles A. Desoer & Kuh, McGrawHill.
CIRCUITS and SYSTEMS – part II Prof. dr hab. Stanisław Osowski Electrical Engineering (B.Sc.) Projekt współfinansowany przez Unię Europejską w ramach Europejskiego.
CIRCUITS and SYSTEMS – part I Prof. dr hab. Stanisław Osowski Electrical Engineering (B.Sc.) Projekt współfinansowany przez Unię Europejską w ramach Europejskiego.
ABE425 Engineering Measurement Systems ABE425 Engineering Measurement Systems Laplace Transform Dr. Tony E. Grift Dept. of Agricultural & Biological Engineering.
ELECTRICAL ENGINEERING: PRINCIPLES AND APPLICATIONS, Fourth Edition, by Allan R. Hambley, ©2008 Pearson Education, Inc. Lecture 13 RC/RL Circuits, Time.
1 EKT101 Electric Circuit Theory Chapter 5 First-Order and Second Circuits.
First Order And Second Order Response Of RL And RC Circuit
CIRCUITS and SYSTEMS – part II Prof. dr hab. Stanisław Osowski Electrical Engineering (B.Sc.) Projekt współfinansowany przez Unię Europejską w ramach Europejskiego.
Chapter 5 First-Order and Second Circuits 1. First-Order and Second Circuits Chapter 5 5.1Natural response of RL and RC Circuit 5.2Force response of RL.
Response of First Order RL and RC
Ch3 Basic RL and RC Circuits 3.1 First-Order RC Circuits 3.2 First-Order RL Circuits 3.3 Exemples Readings Readings: Gao-Ch5; Hayt-Ch5, 6 Circuits and.
CONTROL SYSTEM UNIT - 6 UNIT - 6 Datta Meghe Institute of engineering Technology and Research Sawangi (meghe),Wardha 1 DEPARTMENT OF ELECTRONICS & TELECOMMUNICATION.
ELECTRIC CIRCUITS EIGHTH EDITION
CAPACITANCE AND INDUCTANCE
Transient Circuit Analysis Cont’d.
DEPT.:-ELECTRONICS AND COMMUNICATION SUB: - CIRCUIT & NETWORK
EKT101 Electric Circuit Theory
First Order And Second Order Response Of RL And RC Circuit
Automatic Control Theory CSE 322
EKT101 Electric Circuit Theory
Complex Frequency and Laplace Transform
Feedback Control Systems (FCS)
Fundamentals of Electric Circuits Chapter 16
Fundamentals of Electric Circuits
Lecture 13 - Step Response of Series and Parallel RLC Circuits
Digital Control Systems (DCS)
Digital Control Systems (DCS)
Step-by-Step Pulse Response
Chapter 8 Second Order Circuits
§1—2 State-Variable Description The concept of state
CIRCUITS and SYSTEMS – part II
First Order Circuit Capacitors and inductors RC and RL circuits.
CIRCUITS and SYSTEMS – part II
CIRCUITS and SYSTEMS – part I
Presentation transcript:

CIRCUITS and SYSTEMS – part II Prof. dr hab. Stanisław Osowski Electrical Engineering (B.Sc.) Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego. Publikacja dystrybuowana jest bezpłatnie

Lecture 9 Transient states in electrical circuits – differential equation approach

3 Basic notions Steady state – the sdtate in the circuit when the response of circuit is of the same shape as the excitation. Transient state – the response of the circuit following the commutation in the circuit. In this state the response is of different character than the excitation. Transient response is the superposition of steady state and natural response. Natural response - response of circuit deprived of external excitation, following the nonzero initial conditions) Commutation – arbitrary change in the circuit. - the time point prior to commutation (left side limit) - the time point directly after commutation (right side limit)

4 Commutation laws Commutation law for capacitors Determination of initial conditions:  Calculate the steady state response of circuit before commutation  Write the response in time form  Calculate the currents of inductors and voltages of capacitors at the time t 0 of commutation Commutation law for inductors

5 Example Determine the initial conditions in the circuit. Assume: L=1H, C=0,5F, R=1 , Solution: Complex represenation of elements:

6 Initial conditions Circuit equations in steady state Initial conditions

7 State space decription of the circuit The general differential form description of the linear circuit The variables x of the minimal quantity form the state variables.

8 Matrix form of state description The normal state description A, B – state matrices Response matrix equation y(t) C, D – output matrices.

9 Example Determine the state description of the circuit in normal form From Kirchhof laws and definition of elements we get

10 Example (cont.) Matrix form of state equations State vector x and excitation vector u Assuming: R=2 , L=1H, C=1F we get

11 Solution of transient state using classical method In the first step we transform the system of n first order state space equations into one nth order differential equation of one variable x. The solution of it is composed of two components: the steady state x u and natural response x p. The steady state corresponds to the external excitation and natural response to nonzero initial conditions only.

12 Natural response The natural response corresponds to the solution of the homogenous differential equation (zero excitation) Characteristic equation The roots of this equation s i (i=1, 2,..., n) are the poles of the system.

13 Final solution The general solution of the homogenous differential equation of nth order is in the form A i – constants of integration calculated on the basis of initial conditions (solution of system of linear equations). The final solution of the nonhomogenous differential equation is the sum of steady state and natural response solutions This method is called the classical method of solution of the differential equations. It is very easy in application to the first order differential equations only.

14 Consider the transient response in RL circuit at DC excitation. The steady state current in the circuit Transient in RL circuit at DC excitation

15 Solution of transient state The homogenous differential equation Characteristic equation General form of solution of natural response The final (general) form of transient

16 Solution of transient state (cont.) Commutation law Hence Current of inductor The current in RL circuit at different time constants Time constant of RL circuit

17 Voltage of inductor Transient voltage of the inductor The voltage of the inductor in RL circuit at different time constants

18 Transient in RC circuit at DC excitation Consider the transient response in RC circuit at DC excitation The voltage of capacitor in steady state

19 Solution of transient state After eliminating the source we get the homogenous equation Characteristic equation General solution of natural response Final general form of solution of transient

20 Solution of transient state (cont.) Commutation law Hence Final solution Graphical presentation of capacitor voltage at different time constants Time constant of RC circuit

21 Current of the capacitor Current of capacitor in transient form Graphical presentation of capacitor current at different time constants