Active Beam Spectroscopy in Hot Fusion Plasmas (Introduction) Seminar-I Institute for Plasma Physics Academy of Sciences Hefei, China May, 5, 2007 Acknowledgement:

Slides:



Advertisements
Similar presentations
Ion Heating and Velocity Fluctuation Measurements in MST Sanjay Gangadhara, Darren Craig, David Ennis, Gennady Fiskel and the MST team University of Wisconsin-Madison.
Advertisements

Status and activity on LIF-technique development in NFI. I.Moskalenko, N.Molodtsov, D.Shcheglov.
Introduction to Plasma-Surface Interactions Lecture 6 Divertors.
INSTITUT MAX VON LAUE - PAUL LANGEVIN Fast Real-time SANS Detectors Charge Division in Individual, 1-D Position- sensitive Gas Detectors Patrick Van Esch.
for Fusion Power Monitoring
Intense Diagnostic Neutral Beam For Burning Plasmas Challenges for ITER and Opportunities for KSTAR Jaeyoung Park Glen Wurden and MFE team Los Alamos National.
Spectrometric Diagnosis Group in Plasma Chemistry and Physics 박영동 1, 오수기 2 1 Department of Chemistry, 2 Department of Physics, Ajou University, Suwon ,
Pulsed Cathodic Arc Plasma Diagnostics Optical Emission Spectroscopy Results Aluminium.
Atomic collisions in fusion plasma physics An introduction to the course Atomic Physics in Fusion, ED2235 Henric Bergsåker 26 Oct 2011.
A.Karpushov, Mission 410, Jaunt 414,  p "H-gas puff experiments on TCV" Réunions scientifiques, 22 novembre 2004  p 414-1: “H-gas puff experiments.
European Joint PhD Programme, Lisboa, Diagnostics of Fusion Plasmas Spectroscopy Ralph Dux.
Imaging Diagnostics at the H-1 National Plasma Fusion Research Facility Left: The coherence tomography system Above: Plasma emission reconstructions compared.
FIDA Diagnostic Diagnostic for FAST IONS : it measures the vertical component of perpendicular energy Processes generating fast ions –Beam –ICRH heating.
49th Annual Meeting of the Division of Plasma Physics, November , 2007, Orlando, Florida Ion Temperature Measurements and Impurity Radiation in.
Active Beam Spectroscopy (Evaluation of Data and Supporting Software) Acknowledgement: CXRS groups at JET, TEXTOR, Tore Supra, ASDEX-UG and members of.
D. Borba 1 21 st IAEA Fusion Energy Conference, Chengdu China 21 st October 2006 Excitation of Alfvén eigenmodes with sub-Alfvénic neutral beam ions in.
Measurements with the KSTAR Beam Emission Spectroscopy diagnostic system Máté Lampert Wigner Research Centre for Physics Hungarian Academy of Sciences.
O. Marchuk 1, Yu. Ralchenko 2, D.R. Schultz 3, W. Biel 1, T. Schlummer 1 and E. Stambulchik Institute of Energy and Climate Research, Forschungszentrum.
Fast imaging of global eigenmodes in the H-1 heliac ABSTRACT We report a study of coherent plasma instabilities in the H-1 plasma using a synchronous gated.
1 Applications of ADAS to ITER Diagnostics Robin Barnsley and ITER Diagnostics Division Martin O’Mullane, Strathclyde University ADAS Workshop, Cadarache,
2D Position Sensitive Detector for Plasma diagnosis
PC4250 Secondary Ion Mass Spectrometry (SIMS). What is SIMS? SIMS is a surface analysis technique used to characterize the surface and sub-surface region.
Kaschuck Yu.A., Krasilnikov A.V., Prosvirin D.V., Tsutskikh A.Yu. SRC RF TRINITI, Troitsk, Russia Status of the divertor neutron flux monitor design and.
10th ITPA TP Meeting - 24 April A. Scarabosio 1 Spontaneous stationary toroidal rotation in the TCV tokamak A. Scarabosio, A. Bortolon, B. P. Duval,
Measurement and modeling of hydrogenic retention in molybdenum with the DIONISOS experiment G.M. Wright University of Wisconsin-Madison, FOM – Institute.
1 October 7, 2011 ADAS WORKSHOP Mi-Young Song Mi-Young Song Atomic and Molecular research activities of Data Center for Plasma Properties (NFRI)
The principle of SAMI and some results in MAST 1. Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, , China 2. Culham Centre.
On the use of LIBS to determine the fractional abundances of carbon ions in the laser plasma plume M. Naiim Habib 1, Y. Marandet 2, L. Mercadier 3, Ph.
Negative Ions in IEC Devices David R. Boris 2009 US-Japan IEC Workshop 12 th October, 2009 This work performed at The University of Wisconsin Fusion Technology.
TIME-RESOLVED OPTICAL SPECTROSCOPY OF HIGH-TEMPERATURE PLASMAS M.J. Sadowski  , K. Malinowski , E. Skladnik-Sadowska , M. Scholtz , A. Tsarenko ¤
Plasma diagnostics using spectroscopic techniques
1 ITPA St Petersburg April 2009G.Gorini JET results on the determination of thermal/non-thermal fusion yield from neutron emission spectroscopy.
Tunable, resonant heterodyne interferometer for neutral hydrogen measurements in tokamak plasmas * J.J. Moschella, R.C. Hazelton, M.D. Keitz, and C.C.
1 Fast Ion D-Alpha (FIDA) measurements at ASDEX Upgrade B. Geiger, M. Garcia Munoz, W. W. Heidbrink, G. Tardini, V. Igochine, R. Fischer, R. Mc Dermott.
10 March 2009DVCM Corrections to the energy distribution of the NBI power PPF  Background  History of the problem  Proposed changes  Affected data.
Introduction to Plasma- Surface Interactions Lecture 3 Atomic and Molecular Processes.
4 th ITPA Meeting Apr 03 LRB Rotation of Impurity Species in the DIII-D Tokamak and Comparison with Neoclassical Theory L.R. Baylor, K.H. Burrell*, R.J.
Studies on fast ion distribution Correlated with the spectroscopy diagnostics measurements Gerarda Apruzzese CRE Frascati.
Active Beam Spectroscopy in Hot Fusion Plasmas (Beam Emission Spectroscopy and MSE) Acknowledgement: CXRS groups at JET, TEXTOR, Tore Supra, ASDEX-UG and.
Pellet Charge Exchange Measurement in LHD & ITER ITPA Tohoku Univ. Tetsuo Ozaki, P.Goncharov, E.Veschev 1), N.Tamura, K.Sato, D.Kalinina and.
Supported by Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics NYU ORNL PPPL PSI SNL UC Davis UC Irvine UCLA.
CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority Beam Species Measurements on the MAST NBI system Brendan Crowley Thanks to.
Use of the focusing multi-slit ion optical system at the diagnostic injector RUDI A.Listopad 1, J.Coenen 2, V.Davydenko 1, A.Ivanov 1, V.Mishagin 1, V.Savkin.
FOM - Institute for Plasma Physics Rijnhuizen Association Euratom-FOM Diagnostics and Control for Burning Plasmas Discussion All of you.
Gregory ClarkeTechnological Plasmas Research Group Time resolved diagnostics for pulsed magnetron plasmas.
M. von Hellermann Progress and Status of Active Beam Spectroscopy for ITER Manfred von Hellermann 10th ITPA diagnostic Meeting Kurchatov, Moscow, TRINTI.
Absolute neutron yield measurement using divertor NFM Kaschuck Yu.A., Krasilnikov A.V., Prosvirin D.V., Tsutskikh A.Yu. SRC RF TRINITI, Troitsk, Russia.
Effect of Helical Magnetic Field Ripples on Energetic Particle Confinement in LHD Plasmas T.Saida, M.Sasao, M.Isobe 1, M.Nishiura 1, S.Murakami 2, K.Matsuoka.
045-05/rs PERSISTENT SURVEILLANCE FOR PIPELINE PROTECTION AND THREAT INTERDICTION Taming The Physics For Commercial Fusion Power Plants ARIES Team Meeting.
HT-7 ASIPP The measurement of the light impurity radiation profiles for the impurity particle transport in the HT-7 tokamak Qian Zhou, B.N.Wan, Z.W.Wu,
Jan. 18, 2008 Hall C Meeting L. Yuan/Hampton U.. Outline HKS experimental goals HKS experimental setup Issues on spectrometer system calibration Calibration.
Charge Exchange Spectroscopic Diagnostic for the TJ-II José Miguel Carmona Torres Laboratorio Nacional de Fusion EURATOM-CIEMAT.
D-Alpha Fast-Ion Diagnostic: Recent Results from DIII-D W.W. Heidbrink, UC Irvine D-Alpha Diagnostic: Yadong Luo, K. Burrell, + Ion Cyclotron Heating:
1 Nuclear Fusion Class : Nuclear Physics K.-U.Choi.
HT-7 ASIPP Investigation on Z eff and impurities behavior with molybdenum limiter in lithium coating experiments on HT-7 tokamak Presented by Y.J.Chen.
Evaluation of Anomalous Fast-Ion Losses in Alcator C-Mod S. D. Scott Princeton Plasma Physics Laboratory In collaboration with R. Granetz, D. Beals, C.
Hard X-rays from Superthermal Electrons in the HSX Stellarator Preliminary Examination for Ali E. Abdou Student at the Department of Engineering Physics.
M. von Hellermann Frontiers in Diagnostic Technology 1/36 Active Beam Spectroscopy For ITER International Conference on Frontiers in Diagnostic Technology.
Member of the Helmholtz Association Meike Clever | Institute of Energy Research – Plasma Physics | Association EURATOM – FZJ Graduiertenkolleg 1203 Dynamics.
Manoj B. Jadhav Supervisor Prof. Raghava Varma I.I.T. Bombay PANDA Collaboration Meeting, PARIS – September 11, 2012.
Gamma Ray Spectrometry System Design for ITER Plasma Diagnostics
Active Beam Spectroscopy in Hot Fusion Plasmas
Preliminary study for Soft X-ray Spectroscopy in VEST
Impurity Transport Research at the HSX Stellarator
Charge Exchange Analysis Diagnostic Development
Status of Equatorial CXRS System Development
Physics of fusion power
Comparisons of Measurements and Gyro-kinetic Simulations of Turbulence and Trans-port in Alcator C-Mod EDA H-Mode Discharges M. B. Sampsell, R. V. Bravenec.
Evaluation of the main ion flow and temperature using the GPI system
K. Ida1,2, R. Sakamoto1,2, M. Yoshinuma1,2, K. Yamasaki3, T
Presentation transcript:

Active Beam Spectroscopy in Hot Fusion Plasmas (Introduction) Seminar-I Institute for Plasma Physics Academy of Sciences Hefei, China May, 5, 2007 Acknowledgement: CXRS groups at JET, TEXTOR, Tore Supra, ASDEX-UG and members of the ITPA expert group on Active Beam Spectroscopy Manfred von Hellermann FOM Institute for Plasma Physics Rijnhuizen, NL

M. von Hellermann 1)Introduction to Active Beam Spectroscopy 2)Spectral Analysis, Evaluation and Simulation Codes 3)Beam Emission Spectroscopy and MSE

M. von Hellermann Outline  Basic concepts of active beam spectroscopy (CXRS + BES)  CXRS on JET  Global Consistency Checks based on CXRS  CXRS and BES on ITER making use of a DNB

M. von Hellermann CXRS Aims : 1) Helium ash measurement 2) Impurity ion densities 3) Fuel mixture and density 4) Plasma rotation 5) Ion temperature 6) Particle transport studies BES & MSE Aims : 1) Localisation of active volume 2) Local Beam Density (BES) 3) Density Fluctuations(BES) 4) Local pitch angle (MSE) 5) Local Lorentz field (MSE)

M. von Hellermann Active Beam Spectroscopy ( basic principles)  localized measurement  quantitative use of intensities  intrinsic consistency of temperature, rotation and density  advanced collisional radiative atomic modelling  beam emission spectroscopy as indispensable collateral to CXRS  BES and MSE

M. von Hellermann Courtesy: Carine Giroud

M. von Hellermann Beam Emission Spectroscopy on TEXTOR D-CXRS

M. von Hellermann Combination of CXRS and BES: common line of sight and beam geometry Beam Emission Spectroscopy as tool for absolute calibration of CXRS signals

M. von Hellermann local concentration measurements reduced to a line ratio measurement Combination of CXRS and BES enables deduction of ion densities without absolute calibration and measurement of optical transmission Combination of CXRS and BES enables deduction of ion densities without absolute calibration and measurement of optical transmission Note: Atomic rates Q depend on energy, electron and ion densities and temperatures

M. von Hellermann Ion Temperature, Velocity and Density measurement Ion Temperarure deduced from Doppler width. Velocity can be deduced from Doppler shift Density can be deduced from measured intensity can be deduced from continuum background Ti v Reference line For global consistency all physics parameters extracted simultaneously from CX spectrum including its baseline need to be validated

M. von Hellermann Variation of the cross-section with beam energy D 0 +He 2+ -> D + + He + (n=4 -> n=3) D 0 +Be 4+ -> D + + Be 3+ (n=6 -> n=5) D 0 +C 6+ -> D + + C 5+ (n=8 -> n=7) Intensity of Charge-exchange emission Effective CX emission Rates provided by ADAS

Core CXRS diagnostic at JET Spatial resolution: limited by l.o.s. intersection of flux surfaces in beam volume Time resolution: limited by detector readout ~50ms. Courtesy: Carine Giroud

M. von Hellermann Parasitic emission to active charge-exchange emission Parasitic emission: electron impact and passive CX emission of other species coming from the edge of the plasma. C 2+ electron impact Be 1+ electron impact C 5+ charge-exchange spectra

M. von Hellermann Parasitic emission: passive charge-exchange with thermal deuterium neutrals Parasitic emission to active charge-exchange emission Line of sight Neutral beam Zone of high passive charge-exchange C 5+ active CX C 5+ passive CX Top view of torus

M. von Hellermann Some JET CXRS results

M. von Hellermann Example of the use of Charge Exchange measurements Internal transport barrier#51976 Courtesy: Carine Giroud

M. von Hellermann Example of the use of Charge Exchange measurements Impurity transport studies Crucial to study impurity behaviour Low and high Z impurity: fuel dilution (He ash) High Z : radiative collapse Courtesy: Carine Giroud

M. von Hellermann CHEAP Charge Exchange Analysis Package  Mapping of physics quantities on symmetrised coordinates (magnetic flux surface indices)  Monitoring of main low-Z ions including bulk ions  Self consistent calculation of beam-target interaction processes  Primary data consistency checks (effective ion charge, kinetic plasma energy, neutron yield

M. von Hellermann

Z eff contributions from C +6, Ar +16 and Ar +18 JET pulse #61388

M. von Hellermann Z eff -Visible Bremsstrahlung (Abel inverted) Z eff reconstructed from C +6, Ar +16 and Ar +18

M. von Hellermann Reconstruction of Thermal and Beam -Thermal Neutron yield in DT plasma

Chris Walker, ITER CT Diagnostic beam for ITER: E=100keV/amu, P=3.6MW, div=10mrad, distance to blanket opening 19.2m

M. von Hellermann Table II 200 keV, 50 A D beam Source Dimensions : Y = 1.53 m (high) and X =0.58 m Divergence of the main beam : 10 mrad  I II III  ’ (mrad)  ’ (mra d)  (mra d)  (mr ad) Y’( m) X’( m) Current (A)Power at observatio n point (MW) Launched power (MW) Fractional power transmitt ed Halo component (15% main beam Divergence (85% main beam) Aperture dimensio ns Ape rtur e loca tion (m) Fy (m) Fx (m) Case Courtesy: Drs M.Singh, S.Mattoo, Institute for Plasma Research, India

M. von Hellermann

Conceptual optics design for ITER Core-CXRS U-port periscope combining neutron labyrinth and Cassegrain output optics full view of DNB path (2m) Double Vacuum Window Adjustment mechanism Rear of periscope Fibres to spectrometers Cassegrain output to fibres

M. von Hellermann Optics layer Step 4 Placing of upper shielding blocks Connection blocks to cooling system Shielding block TNO periscope design: “Central Removable Tube” containing First-Mirror and Shutter Friso Klinkhamer, TNO

M. von Hellermann

Proposed active (focussed on DNB) and passive (off-beam) fibre bundles

M. von Hellermann TRINITI Spectrometer ITER CXRS proto-type spectrometer developed by TRINITI, Troitsk, RF Echelle 15 th order, F/3, f=500mm, 0.25nm/mm

M. von Hellermann Littrow spectro + Pixelvision ccd TRINITI spectro + Pixis 400B ccd # A same line of sight Red: during NBI Blue: before NBI

M. von Hellermann ParameterRangeTime ResSpace resaccuracy Vtor1-200 km/s10 msa/3030% Vpol1-50 km/s10 msa/3030% Ti, core (r/a<0.9) keV100 msa/1010% Ti, edge (r/a>0.9) 50eV-10 keV 100 msTbd10% Core He density 1-10%100 msa/1010% ITER CXRS measurement requirement table

M. von Hellermann

Simulated Continuum level, fluctuation and HeII signal strength for ITER U-port 2 (left) and U-port-3 (right) U-port-3 continuum level is slightly below U-port-2 level due to shorter path length through plasma

Error Analysis for CVI, U-port-2,  =100ms

Error Analysis for simulated HeII spectra, ITER Upper-port-2,  =100ms, Doppler width and shift deduced from simultaneously analysed CVI

           D-alpha-edge D-alpha-CX   DNB induced MSE and CXRS spectrum, B=5.3T, E=100keV/amu

M. von Hellermann MSE and CXRS on D error analysis

M. von Hellermann Summary remarks  Active Beam Spectroscopy offers a rich diagnostic potential for present and future fusion experiments  Substantial progress has been achieved in a quantitative analysis of active spectra and results are considered as indispensable input for plasma interpretation codes  Advanced atomic modelling and self consistent analysis procedures have led to a general acceptance of CXRS as a reliable diagnostic and plasma control tool  Future fusion devices as ITER do envisage the use of CXRS with challenging demands on components and beam sources