The Quincke rotor : An experimental model for the Lorenz attractor LPMC, Groupe « Fluides Complexes » E. Lemaire, L. Lobry, F. Peters E silica particle (100 m) transformer oil E ~ 1 kV/cm f ~ 100 Hz
apparent viscosity decrease : isolated particle dynamicsChaotic regime conductivity enhancement : E Quincke rotation in suspensions : E Q
The Quincke rotation + E E EE 11 Relaxation equation equilibrium dipole particle convection Maxwell time polarisation coefficient (free charges) < 0
Electric torque: Viscous torque : Stationary state : Stationary solution E EE E (E<E c ) vv EE v viscous coefficient 0 ECEC E st
The Quincke rotor cylinder transformer oil Relaxation equation (2D) : Mechanical equation : y z E=2 E C E=4 E C
Laboratory water wheel (R. Malkus, 1972) : Pr=5 r=31 flow masse current Maxwell time M gravity electric field gravity center electric dipole inertia viscous drag Lorenz equations Variable change : b=1 t * =t/ leaky compartment
Chaotic dynamics Poincaré section (plane X=Y)First return map
Experimental set-up 0-15 kV 1 cm transformer oil laser photodiode Rotor :glass capillary length L=5 cm, radius a=1mm 2 =2.4 Transformer oil : conductivity = S.m -1 viscosity =14 mPa.s permittivity 1 =2.1 permittivity M =150 ms E c =0.97 kV/cm mecha =60 ms Pr=2.5
Experimental results (rad.s -1 ) E 2 (kV.cm -1 ) 2 Bifurcation diagram E c exp =2.4 kV/cm First bifurcation : (E c theo =0.97 kV/cm) solid friction Second bifurcation : E chaos exp =6.5 kV/cm (E chaos theo =5.5 kV/cm) (rad.s -1 ) t (s) E=6.6 kV/cm
Experimental results k+1 (rad.s -1 ) k (rad.s -1 ) First return map Lorenz-type chaos numerical experimental