Non-isothermal Gravoturbulent Fragmentation: Effects on the IMF A.-K. Jappsen¹, R.S. Klessen¹, R.B. Larson²,Y. Li 3, M.-M. Mac Low 3 ¹Astrophysikalisches.

Slides:



Advertisements
Similar presentations
Stellar Structure Section 6: Introduction to Stellar Evolution Lecture 18 – Mass-radius relation for black dwarfs Chandrasekhar limiting mass Comparison.
Advertisements

From protostellar cores to disk galaxies - Zurich - 09/2007 S.Walch, A.Burkert, T.Naab Munich University Observatory S.Walch, A.Burkert, T.Naab Munich.
The Thick Disks of Spiral Galaxies as Relics from Gas-Rich, Turbulent, Clumpy Disks at High Redshifts Frédéric Bournaud, Bruce G. Elmegreen, and Marie.
Star Formation at Very Low Metallicity Anne-Katharina Jappsen.
Methanol maser polarization in W3(OH) Lisa Harvey-Smith Collaborators: Vlemmings, Cohen, Soria-Ruiz Joint Institute for VLBI in Europe.
Star Formation and the Interstellar Medium
Proto-Brown Dwarf Disks as Products of Protostellar Disk Encounters Sijing Shen, James Wadsley (McMaster) The Western Disk Workshop May 19, 2006.
Properties of the Structures formed by Parker-Jeans Instability Y.M. Seo 1, S.S. Hong 1, S.M. Lee 2 and J. Kim 3 1 ASTRONOMY, SEOUL NATIONAL UNIVERSITY.
Accretion Processes in GRBs Andrew King Theoretical Astrophysics Group, University of Leicester, UK Venice 2006.
How do stars get their masses? and A short look ahead Phil Myers CfA Dense Core LXV Newport, RI October 23, 2009.
The first stars formation in warm dark matter model Liang Gao National Observatories, China.
 High luminosity from the galactic central region L bol ~ erg/s  High X-ray luminosity  Supermassive black hole at the center of the galaxy.
Star formation simulations -> N=10000……. Cathie Clarke, I.O.A. cf special issue Phil. Trans. Roy. Soc., ed. De Grijs,Ch.3,arXiv:
A Survey of the Global Magnetic Fields of Giant Molecular Clouds Giles Novak, Northwestern University Instrument: SPARO Collaborators: P. Calisse, D. Chuss,
Galactic and Extragalactic star formation M.Walmsley (Arcetri Observatory)
The formation of stars and planets
An introduction to the Physics of the Interstellar Medium V. Magnetic field in the ISM Patrick Hennebelle.
Low-mass H-burning stars, brown dwarfs, & planets 13 M J 80 M J Planets Mayor & Queloz 1995 Brown dwarfs Rebolo et al Stars 1 M J = 0.01 M 
Star & Planet Formation Alyssa A. Goodman Harvard-Smithsonian Center for Astrophysics.
The Influence of Radiative Transfer on SPH Simulations of Star Formation Stuart C. Whitehouse and Matthew R. Bate
Ralf Klessen: PPV, Oct. 24, 2005 Molecular Cloud Turbulence and Star Formation Javier Ballesteros-Paredes 1, Ralf Klessen 2, Mordecai- Mark Mac Low 3,
A Multiphase, Sticky Particle, Star Formation Recipe for Cosmology
A Multiphase, Sticky Particle, Star Formation Recipe for Cosmology Craig Booth Tom Theuns & Takashi Okamoto.
An introduction to the Physics of the Interstellar Medium III. Gravity in the ISM Patrick Hennebelle.
ISM & Star Formation. The Interstellar Medium HI - atomic hydrogen - 21cm T ~ 0.07K.
WHAT MOLECULAR ABUNDANCES CAN TELL US ABOUT THE DYNAMICS OF STAR FORMATION Konstantinos Tassis Collaborators: Karen Willacy, Harold Yorke, Neal Turner.
Formation of an IMF-Cluster in a Filamentary Layer Collaborators: F. Adams (Michigan), L. Allen (CfA), R. Gutermuth (CfA), J. Jørgensen (CfA), S. T. Megeath.
Density. Computing Density Density = mass (g) volume (cm 3 ) DETERMINE VOLUME: DETERMINE MASS: RT = Pg. 1.
Star and Planet Formation Sommer term 2007 Henrik Beuther & Sebastian Wolf 16.4 Introduction (H.B. & S.W.) 23.4 Physical processes, heating and cooling.
J. Cuadra – Accretion of Stellar Winds in the Galactic Centre – IAU General Assembly – Prague – p. 1 Accretion of Stellar Winds in the Galactic Centre.
How Massive are the First Stars? Statistical Study of the primordial star formation  M popIII ALMA 北海道大学 / Jan , 2013 ○ Shingo Hirano.
Formation of the First Stars
The Energy Balance of Clumps and Cores in Molecular Clouds Sami Dib Sami Dib CRyA-UNAM CRyA-UNAM Enrique Vázquez-Semadeni (CRyA-UNAM) Jongsoo Kim (KAO-Korea)
Semi-Empirical MHD Modeling of the Solar Wind Igor V. Sokolov, Ofer Cohen, Tamas I. Gombosi CSEM, University of Michigan Ilia I Roussev, Institute for.
Star Formation in Galaxies Yuexing Li (Columbia Univ. /AMNH) Mordecai Mac low (AMNH/Columbia) Ralf Klessen (AIP, Germany) John Dubinski (CITA) Zoltan Haiman.
1 Enrique Vázquez-Semadeni Centro de Radioastronomía y Astrofísica, UNAM, México.
Collaborators : Valentine Wakelam (supervisor)
Dusty Dark Nebulae and the Origin of Stellar Masses Colloquium: STScI April 08.
Equal- and unequal-mass mergers of disk and elliptical galaxies with black holes Peter Johansson University Observatory Munich 8 th Sino-German workshop.
Deciphering Ancient Terrsa 20 Apr 2010 Low-metallicity star formation and Pop III-II transition Kazu Omukai (Kyoto U.) Collaborators: Naoki.
Entropy Generation in the ICM Institute for Computational Cosmology University of Durham Michael Balogh.
Photoionisation of Supernova Driven, Turbulent, MHD Simulations of the Diffuse Ionised Gas Jo Barnes 1, Kenny Wood 1, Alex Hill 2 [1]University of St Andrews,
On the Property of Collapsing Primordial Cloud Core Tsuribe, T. (Osaka University) 2003/09/03-04 at Niigata Univ.
Table of Contents Chapter Preview 3.1 States of Matter
Origin of solar systems 30 June - 2 July 2009 by Klaus Jockers Max-Planck-Institut of Solar System Science Katlenburg-Lindau.
1 Direct Evidence for Two-Fluid Effects in Molecular Clouds Chad Meyer, Dinshaw Balsara & David Tilley University of Notre Dame.
The coordinated growth of stars, haloes and large-scale structure since z=1 Michael Balogh Department of Physics and Astronomy University of Waterloo.
Renaissance: Formation of the first light sources in the Universe after the Dark Ages Justin Vandenbroucke, UC Berkeley Physics 290H, February 12, 2008.
Astronomy 1020-H Stellar Astronomy Spring_2015 Day-32.
Astronomy 1020 Stellar Astronomy Spring_2015 Day-32.
Spiral Triggering of Star Formation Ian Bonnell, Clare Dobbs Tom Robitaille, University of St Andrews Jim Pringle IoA, Cambridge.
Masahiro Machida (Kyoto Univ.) Shu-ichiro Inutsuka (Kyoto Univ.), Tomoaki Matsumoto (Hosei Univ.) Outflow jet first coreprotostar v~5 km/s v~50 km/s 360.
Useful books: Carroll and Ostlie “Intro To Modern Astrophys”, Prialnik “Intro to Stellar Stuct. & Evol.”
L 3 - Stellar Evolution I: November-December, L 3: Collapse phase – theoretical models Background image: courtesy ESO - B68 with.
Fragmentation and Evolution of the First Core
Low-Mass Star Formation, Triggered by Supernova in Primordial Clouds Masahiro N. Machida (Chiba University) Kohji Tomisaka (NAOJ) Fumitaka Nakamura (Niigata.
Rotation Among High Mass Stars: A Link to the Star Formation Process? S. Wolff and S. Strom National Optical Astronomy Observatory.
Probing the First Star Formation by 21cm line Kazuyuki Omukai (Kyoto U.)
1 Suparna Roychowdhury Groups of galaxies in nearby universe, Santiago, Chile, december, 2005 Astronomy Group, Raman Research Institute Bangalore,
Revealing the dynamics of star formation Rowan Smith Rahul Shetty, Amelia Stutz, Ralf Klessen, Ian Bonnell Zentrum für Astronomie Universität Heidelberg,
The Power Spectra and Point Distribution Functions of Density Fields in Isothermal, HD Turbulent Flows Korea Astronomy and Space Science Institute Jongsoo.
LISA double BHs Dynamics in gaseous nuclear disk.
Stellar NurseriesStages of Star Birth. The interstellar medium The space between the stars is not empty.
On the structure of the neutral atomic medium Patrick Hennebelle Ecole Normale supérieure-Observatoire de Paris and Edouard Audit Commissariat à l’énergie.
ERIC HERBST DEPARTMENTS OF PHYSICS AND ASTRONOMY THE OHIO STATE UNIVERSITY Chemistry in Protoplanetary Disks.
Star Formation Triggered By First Supernovae Fumitaka Nakamura (Niigata Univ.)
Cooling, AGN Feedback and Star Formation in Simulated Cool-Core Galaxy Clusters Yuan Li University of Michigan Collaborators: Greg L. Bryan (Columbia)
Shule Li, Adam Frank, Eric Blackman
Hideki Maki Department of Physics, Rikkyo University
Eduard Vorobyov and Shantanu Basu
Presentation transcript:

Non-isothermal Gravoturbulent Fragmentation: Effects on the IMF A.-K. Jappsen¹, R.S. Klessen¹, R.B. Larson²,Y. Li 3, M.-M. Mac Low 3 ¹Astrophysikalisches Institut Potsdam, Germany 2 Yale University, New Haven 3 American Museum of Natural History, New York Piecewise Polytropic Equation of State:  Discontinuity at critical density n c  P=K 1 n  1 n < n c  P=K 2 n  2 n > n c   1 =0.7,  2 =1.1 Jeans Mass:  M J ~  3/2 n (3/2)(-4/3) Initial setup:  M=120 M sun, cube size: 0.29 pc  n 0 =8.8 · 10 4 cm -3, N J =M/M J =171 SPH Simulations:  parallel code GADGET (Springel et al. 2001)  Collapsed cores (protostars) repre- sented by sink particles (Bate et al. 95)  Uniform turbulent driving field on large scales (k=1..2) (Mac Low 99)  Periodic, uniform density cube (Klessen 97)  Self-gravity turned on after turbulence is established (after 2  ff ) (Klessen, Heitsch, Mac Low 2000)  Number of SPH particles: 200,000 1,000,000 and 5,000,000 Why a Piecewise Polytropic Equation of State?:  isothermal treatment neglects influence of thermal physics on fragmentation  calculations with polytropic equation of state but with constant  show that the fragmentation depends on the value of  (Li et al. 2003) Why do we choose  1 =0.7 and  2 =1.1?:  below g/cm -3 : atomic and molecular cooling control temperature  temperature decreases with increasing density with a  of about 0.7  above g/cm -3 : gas becomes thermally coupled to the dust  temperature rises slowly with density, and  increases to about 1.1 (Larson 1985, Masanuga & Inutsuka 2000) Open Questions:  Is there a connection between the change of  and a characteristic stellar mass?  Is the stellar mass spectrum (IMF) universal?  Can we find an explanation for the IMF based on fundamental atomic and molecular physics?  How appropriate is an isothermal EOS for star-forming gas? n c =4.3 · 10 5 cm -3 n c =4.3 · 10 7 cm -3 Density Distribution of the Gas Results and Implications  Simulations show that change in  influences median mass of the clump mass spectrum: a higher critical density n c results in a lower median mass characteristic mass M ch scales with n c -0.4+/-0.2  Number of collapsed cores increases with increasing critical density n c  Influence of different realizations of the turbulent driving field: we find a similar trend of decreasing median mass with increasing n c but variations due to stochastic nature of turbulent flows  Dependency on the scale of turbulence: small-scale turbulence leads to less fragmentation (see also Li et al. 2003)  More simulations needed to determine influence of: realistic chemical network, radiation transfer processes and varying abundances Visits by AKJ and YL were supported by Kade fellowships. RSK and AKJ acknowledge support by the Deutsche Forschungsgemeinschaft grant KL1385/1. YL and M-MML were supported by NASA grants NAG and NAG , and by NSF grants AST and AST Reference Bate, Bonell & Price, 1995, MNRAS, 277, 362 Klessen, 1997, MNRAS, 292, 11 Klessen, Heitsch, Mac Low, 2000, ApJ, 535, 887 Larson, 1985, MNRAS, 214, 379 Mac Low, 1999, ApJ, 524, 169 Masunaga & Inutsuka, 2000, ApJ, 531, 350 Li, Klessen, Mac Low, 2003, ApJ, 592, 975 Springel, Yoshida, White, 2001, New Astronomy, 6, 79 Comparison of Number of Cores and Accretion RateMedian Mass vs Critical Density Temperature vs Critical Density Clump Mass Spectrum Different Turbulent Driving Fields k =7..8 n c =4.3 ·10 5 cm -3 n c =4.3 ·10 6 cm -3 n c =4.3 ·10 7 cm -3 n c =4.3 ·10 4 cm -3   = 0.7  = 1.1 M ~ n c -0.4+/-0.2 M ~ n c -0.3+/-0.1 M ~ n c -0.3+/