Analysis of two-way tables - Inference for two-way tables IPS chapter 9.1 © 2006 W.H. Freeman and Company.

Slides:



Advertisements
Similar presentations
CHAPTER 23: Two Categorical Variables: The Chi-Square Test
Advertisements

CHAPTER 23: Two Categorical Variables The Chi-Square Test ESSENTIAL STATISTICS Second Edition David S. Moore, William I. Notz, and Michael A. Fligner Lecture.
Chapter 13: Inference for Tables
Does Background Music Influence What Customers Buy?
Chapter 13: Inference for Distributions of Categorical Data
Copyright ©2011 Brooks/Cole, Cengage Learning More about Inference for Categorical Variables Chapter 15 1.
Copyright ©2006 Brooks/Cole, a division of Thomson Learning, Inc. More About Categorical Variables Chapter 15.
1 Chi-Squared Distributions Inference for Categorical Data and Multiple Groups.
CHAPTER 11 Inference for Distributions of Categorical Data
Analysis of Two-Way Tables Inference for Two-Way Tables IPS Chapter 9.1 © 2009 W.H. Freeman and Company.
Statistics 303 Chapter 9 Two-Way Tables. Relationships Between Two Categorical Variables Relationships between two categorical variables –Depending on.
1 Chapter 20 Two Categorical Variables: The Chi-Square Test.
Presentation 12 Chi-Square test.
+ The Practice of Statistics, 4 th edition – For AP* STARNES, YATES, MOORE Chapter 11: Inference for Distributions of Categorical Data Section 11.2 Inference.
Lesson Inference for Two-Way Tables. Vocabulary Statistical Inference – provides methods for drawing conclusions about a population parameter from.
Analysis of Two-Way Tables
Analysis of Count Data Chapter 26
Goodness-of-Fit Tests and Categorical Data Analysis
A random sample of 300 doctoral degree
Analysis of Count Data Chapter 14  Goodness of fit  Formulas and models for two-way tables - tests for independence - tests of homogeneity.
Analysis of two-way tables - Formulas and models for two-way tables - Goodness of fit IPS chapters 9.3 and 9.4 © 2006 W.H. Freeman and Company.
1 Desipramine is an antidepressant affecting the brain chemicals that may become unbalanced and cause depression. It was tested for recovery from cocaine.
Analysis of Count Data Chapter 26  Goodness of fit  Formulas and models for two-way tables - tests for independence - tests of homogeneity.
Analysis of two-way tables - Formulas and models for two-way tables - Goodness of fit IPS chapters 9.3 and 9.4 © 2006 W.H. Freeman and Company.
Warm-up Researchers want to cross two yellow- green tobacco plants with genetic makeup (Gg). See the Punnett square below. When the researchers perform.
Lecture 9 Chapter 22. Tests for two-way tables. Objectives The chi-square test for two-way tables (Award: NHST Test for Independence)  Two-way tables.
CHAPTER 11 SECTION 2 Inference for Relationships.
Chapter 11 The Chi-Square Test of Association/Independence Target Goal: I can perform a chi-square test for association/independence to determine whether.
FPP 28 Chi-square test. More types of inference for nominal variables Nominal data is categorical with more than two categories Compare observed frequencies.
Analysis of Two-Way tables Ch 9
+ Chi Square Test Homogeneity or Independence( Association)
Chi-Square Analysis Test of Homogeneity. Sometimes we compare samples of different populations for certain characteristics. This data is often presented.
BPS - 5th Ed. Chapter 221 Two Categorical Variables: The Chi-Square Test.
Analysis of two-way tables - Inference for two-way tables IPS chapter 9.2 © 2006 W.H. Freeman and Company.
Essential Statistics Chapter 161 Review Part III_A_Chi Z-procedure Vs t-procedure.
Chapter 11 Chi- Square Test for Homogeneity Target Goal: I can use a chi-square test to compare 3 or more proportions. I can use a chi-square test for.
+ The Practice of Statistics, 4 th edition – For AP* STARNES, YATES, MOORE Chapter 11: Inference for Distributions of Categorical Data Section 11.2 Inference.
CHAPTER 23: Two Categorical Variables The Chi-Square Test ESSENTIAL STATISTICS Second Edition David S. Moore, William I. Notz, and Michael A. Fligner Lecture.
Statistical Significance for a two-way table Inference for a two-way table We often gather data and arrange them in a two-way table to see if two categorical.
Lecture 9 Chapter 22. Tests for two-way tables. Objectives (PSLS Chapter 22) The chi-square test for two-way tables (Award: NHST Test for Independence)[B.
AP STATISTICS LESSON (DAY 1) INFERENCE FOR TWO – WAY TABLES.
+ Chapter 11 Inference for Distributions of Categorical Data 11.1Chi-Square Goodness-of-Fit Tests 11.2Inference for Relationships.
Lesson Inference for Two-Way Tables. Knowledge Objectives Explain what is mean by a two-way table. Define the chi-square (χ 2 ) statistic. Identify.
Copyright © 2013, 2009, and 2007, Pearson Education, Inc. Chapter 11 Analyzing the Association Between Categorical Variables Section 11.2 Testing Categorical.
Lecture PowerPoint Slides Basic Practice of Statistics 7 th Edition.
Chapter 13- Inference For Tables: Chi-square Procedures Section Test for goodness of fit Section Inference for Two-Way tables Presented By:
BPS - 5th Ed. Chapter 221 Two Categorical Variables: The Chi-Square Test.
The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers CHAPTER 11 Inference for Distributions of Categorical.
Chapter 13 Section 2. Chi-Square Test 1.Null hypothesis – written in words 2.Alternative hypothesis – written in words – always “different” 3.Alpha level.
Statistics for Business and Economics Module 2: Regression and time series analysis Spring 2010 Lecture 2: Chi–squared tests; goodness–of–fit & independence.
Chapter 14 Inference for Distribution of Categorical Variables: Chi-Squared Procedures.
Chapter 11: Categorical Data n Chi-square goodness of fit test allows us to examine a single distribution of a categorical variable in a population. n.
Class Seven Turn In: Chapter 18: 32, 34, 36 Chapter 19: 26, 34, 44 Quiz 3 For Class Eight: Chapter 20: 18, 20, 24 Chapter 22: 34, 36 Read Chapters 23 &
Chi Square Procedures Chapter 14. Chi-Square Goodness-of-Fit Tests Section 14.1.
AP Stats Check In Where we’ve been… Chapter 7…Chapter 8… Where we are going… Significance Tests!! –Ch 9 Tests about a population proportion –Ch 9Tests.
11/12 9. Inference for Two-Way Tables. Cocaine addiction Cocaine produces short-term feelings of physical and mental well being. To maintain the effect,
Chapter 11: Inference for Distributions of Categorical Data
22. Chi-square test for two-way tables
Objectives (PSLS Chapter 22)
Objectives (BPS chapter 23)
Two-Way Tables and The Chi-Square Test*
Chapter 11: Inference for Distributions of Categorical Data
22. Chi-square test for two-way tables
Chapter 11: Inference for Distributions of Categorical Data
Chapter 13: Inference for Distributions of Categorical Data
Chapter 11: Inference for Distributions of Categorical Data
Chapter 11: Inference for Distributions of Categorical Data
11.2 Inference for Relationships
Chapter 13: Chi-Square Procedures
Analysis of two-way tables
Presentation transcript:

Analysis of two-way tables - Inference for two-way tables IPS chapter 9.1 © 2006 W.H. Freeman and Company

Objectives (IPS chapter 9.2) Inference for two-way tables  Hypothesis: no association  Expected counts in two-way tables  The chi-square test  Using software

Hypothesis: no association Again, we want to know if the differences in sample proportions are likely to have occurred by just chance because of the random sampling. We use the chi-square (   ) test to assess the null hypothesis of no relationship between the two categorical variables of a two-way table.

Expected counts in two-way tables Two-way tables sort the data according to two categorical variables. We want to test the hypothesis that there is no relationship between these two categorical variables (H 0 ). To test this hypothesis, we compare actual counts from the sample data with expected counts given the null hypothesis of no relationship. The expected count in any cell of a two-way table when H 0 is true is:

Cocaine addiction Cocaine produces short-term feelings of physical and mental well being. To maintain the effect, the drug may have to be taken more frequently and at higher doses. After stopping use, users will feel tired, sleepy and depressed. The pleasurable high followed by unpleasant after-effects encourage repeated compulsive use, which can easily lead to dependency. Desipramine is an antidepressant affecting the brain chemicals that may become unbalanced and cause depression. It was thus tested for recovery from cocaine addiction. Treatment with desipramine was compared to a standard treatment (lithium, with strong anti-manic effects) and a placebo.

25*26/74 ≈ * * * * * *0.65 Desipramine Lithium Placebo Expected relapse counts No Yes 35% Expected Observed Cocaine addiction

The chi-square statistic (  2 ) is a measure of how much the observed cell counts in a two-way table diverge from the expected cell counts. The formula for the  2 statistic is: (summed over all r * c cells in the table) Large values for  2 represent strong deviations from the expected distribution under the H 0 and providing evidence against H 0. However, since  2 is a sum, how large a  2 is required for statistical significance will depend on the number of comparisons made. The chi-square test

For the chi-square test, H 0 states that there is no association between the row and column variables in a two-way table. The alternative is that these variables are related. If H 0 is true, the chi-square test has approximately a χ 2 distribution with (r − 1)(c − 1) degrees of freedom. The P-value for the chi-square test is the area to the right of  2 under the  2 distribution with df (r−1)(c−1): P(χ 2 ≥ X 2 ).

When is it safe to use a  2 test? We can safely use the chi-square test when:  The samples are simple ransom samples (SRS).  All individual expected counts are 1 or more (≥1)  No more than 20% of expected counts are less than 5 (< 5)  For a 2x2 table, this implies that all four expected counts should be 5 or more.

Chi-square test vs. z-test for two proportions When comparing only two proportions such as in a 2x2 table where the columns represent counts of “success” and “failure,” we can test H 0 : p 1 = p 2 vs. H a p 1 ≠ p 2 equally with a two-sided z test or with a chi-square test with 1 degree of freedom and get the same p-value. In fact, the two test statistics are related: X 2 = (z) 2.

 In Excel you almost have to do all the calculations for the chi-square test yourself, and it only gives you the p-value (not the component).  This is Systat: Menu/Statistics/Crosstabs Using software

Observed Cocaine addiction The p-value is or half a percent. This is very significant. We reject the null hypothesis of no association and conclude that there is a significant relationship between treatment (desipramine, lithium, placebo) and outcome (relapse or not). Minitab statistical software output for the cocaine study

Successful firms Franchise businesses are sometimes given an exclusive territory by contract. This means that the new outlet will not have to compete with other outlets of the same chain within its own territory. How does the presence of an exclusive-territory clause in the contract relate to the survival of the business? A random sample of 170 new franchises recorded two categorical variables for each firm: (1) whether the firm was successful or not (based on economic criteria) and (2) whether or not the firm had an exclusive-territory contract. This is a 2x2 table (two levels for success, yes/no; two levels for exclusive territory, yes/no).  df = (2 − 1)(2 − 1) = 1

Successful firms How does the presence of an exclusive-territory clause in the contract relate to the survival of the business? To compare firms that have an exclusive territory with those that do not, we start by examining column percents (conditional distribution): The difference between the percent of successes among the two types of firms is quite large. The chi-square test can tell us whether or not these differences can be plausibly attributed to chance (random sampling). Specifically, we will test H 0 : No relationship between exclusive clause and success H a : There is some relationship between the two variables

The p-value is significant at α 5% (p 1.5%) thus we reject H 0 : we have found a significant relationship between an exclusive territory and the success of a franchised firm. Successful firms Here is the chi-square output from Minitab:

Computer output using Crunch It! Successful firms