Edge Currents in Superfluid 3 He-A Films RIKEN, May 21, 2012 Surface States and Edge Currents of Superfluid 3 He in Confined Geometries James A. Sauls.

Slides:



Advertisements
Similar presentations
Spectroscopy at the Particle Threshold H. Lenske 1.
Advertisements

HL-3 May 2006Kernfysica: quarks, nucleonen en kernen1 Outline lecture (HL-3) Structure of nuclei NN potential exchange force Terra incognita in nuclear.
Aim – theory of superconductivity rooted in the normal state History – T-matrix approximation in various versions Problem – repeated collisions Solution.
High T c Superconductors & QED 3 theory of the cuprates Tami Pereg-Barnea
Topological Superconductors
Cooper pairs and BCS ( ) Richardson exact solution (1963). Ultrasmall superconducting grains (1999). SU(2) Richardson-Gaudin models (2000). Cooper.
II. Spontaneous symmetry breaking. II.1 Weinberg’s chair Hamiltonian rotational invariant Why do we see the chair shape? States of different IM are so.
Subir Sachdev Science 286, 2479 (1999). Quantum phase transitions in atomic gases and condensed matter Transparencies online at
Breakdown of the adiabatic approximation in low-dimensional gapless systems Anatoli Polkovnikov, Boston University Vladimir Gritsev Harvard University.
Topology of Andreev bound state
Quasiparticle anomalies near ferromagnetic instability A. A. Katanin A. P. Kampf V. Yu. Irkhin Stuttgart-Augsburg-Ekaterinburg 2004.
Universality in ultra-cold fermionic atom gases. with S. Diehl, H.Gies, J.Pawlowski S. Diehl, H.Gies, J.Pawlowski.
Crystal Lattice Vibrations: Phonons
Probing and Manipulating Majorana Fermions in SO Coupled Atomic Fermi Gases Xia-Ji Liu CAOUS, Swinburne University Hawthorn, July.
Universal thermodynamics of a strongly interacting Fermi gas Hui Hu 1,2, Peter D. Drummond 2, and Xia-Ji Liu 2 1.Physics Department, Renmin University.
Nucleons & Nuclei a quick guide to the real essentials in the subject which particle and nuclear physicists won’t tell you.
System and definitions In harmonic trap (ideal): er.
Relativistic chiral mean field model for nuclear physics (II) Hiroshi Toki Research Center for Nuclear Physics Osaka University.
Nuclear Symmetry Energy in QCD degree of freedom Phys. Rev. C87 (2013) (arXiv: ) Eur. Phys. J. A50 (2014) 16 Some preliminary results Heavy.
Superconductivity and Superfluidity * Dietrich Einzel Walther-Meißner-Institut für Tieftemperaturforschung Bayerische Akademie der Wissenschaften Outlook:
Strongly interacting scale-free matter in cold atoms Yusuke Nishida March 12, MIT Faculty Lunch.
Y. Tanaka Nagoya University, Japan Y. Asano Hokkaido University, Japan Y. Tanuma Akita University, Japan Alexander Golubov Twente University, The Netherlands.
5. Exotic modes of nuclear rotation Tilted Axis Cranking -TAC.
@Nagoya U. Sept. 5, 2009 Naoto Nagaosa Department of Applied Physics
Broken symmetries in bulk condensed matter systems have implications for the spectrum of Fermionic excitations bound to surfaces and topological defects.The.
Nuclear Symmetry Energy in QCD degree of freedom Phys. Rev. C87 (2013) arXiv: Some preliminary results 2015 HaPhy-HIM Joint meeting Kie.
Solving Impurity Structures Using Inelastic Neutron Scattering Quantum Magnetism - Pure systems - vacancies - bond impurities Conclusions Collin Broholm*
Opportunities in Basic Science: Quantum Fluids and Solids 3He Brief introduction: solid and liquid 3He 3He as topological quantum matter Broken symmetry.
Physics and Astronomy Dept. Kevin Strecker, Andrew Truscott, Guthrie Partridge, and Randy Hulet Observation of Fermi Pressure in Trapped Atoms: The Atomic.
Superfluid 3He in aerogel I.A. Fomin, P.L. Kapitza Institute for Physical Problems, Moscow. XV INTERNATIONAL SUMMER SCHOOL NICOLÁS CABRERA 100 YEARS LIQUID.
Unconventional superconductivity Author: Jure Kokalj Mentor: prof. dr. Peter Prelovšek.
1 Unconventional Magnetism: Electron Liquid Crystal State and Dynamic Generation of Spin-orbit Coupling Congjun Wu C. Wu and S. C. Zhang, PRL 93,
Collective modes and interacting Majorana fermions in
James A. Sauls Physics Lake Michigan Anton B. Vorontsov
Part A - Comments on the papers of Burovski et al. Part B - On Superfluid Properties of Asymmetric Dilute Fermi Systems Dilute Fermi Systems.
Introduction to topological superconductivity and Majorana fermions
Experimental determination of Universal Thermodynamic Functions for a Unitary Fermi Gas Takashi Mukaiyama Japan Science Technology Agency, ERATO University.
Study of the LOFF phase diagram in a Ginzburg-Landau approach G. Tonini, University of Florence, Florence, Italy R. Casalbuoni,INFN & University of Florence,
The Helical Luttinger Liquid and the Edge of Quantum Spin Hall Systems
Ingrid Bausmerth Alessio Recati Sandro Stringari Ingrid Bausmerth Alessio Recati Sandro Stringari Chandrasekhar-Clogston limit in Fermi mixtures with unequal.
CPOD2011 , Wuhan, China 1 Isospin Matter Pengfei Zhuang Tsinghua University, Beijing ● Phase Diagram at finite μ I ● BCS-BEC Crossover in pion superfluid.
Condensed matter physics in dilute atomic gases S. K. Yip Academia Sinica.
Anisotropic exactly solvable models in the cold atomic systems Jiang, Guan, Wang & Lin Junpeng Cao.
Stationary Josephson effect throughout the BCS-BEC crossover Pierbiagio Pieri (work done with Andrea Spuntarelli and Giancarlo C. Strinati) Dipartimento.
11/14/2007NSU, Singapore Dipolar Quantum Gases: Bosons and Fermions Han Pu 浦晗 Rice University, Houston, TX, USA Dipolar interaction in quantum gases Dipolar.
Rotating FFLO Superfluid in cold atom gases Niigata University, Youichi Yanase Tomohiro Yoshida 2012 Feb 13, GCOE シンポジウム「階層の連結」, Kyoto University.
K.M.Shahabasyan, M. K. Shahabasyan,D.M.Sedrakyan
Delay times in chiral ensembles— signatures of chaotic scattering from Majorana zero modes Henning Schomerus Lancaster University Bielefeld, 12 December.
The Center for Ultracold Atoms at MIT and Harvard Strongly Correlated Many-Body Systems Theoretical work in the CUA Advisory Committee Visit, May 13-14,
Precision collective excitation measurements in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems A. Altmeyer 1, S. Riedl 12,
How do nuclei rotate? 3. The rotating mean field.
高密度クォーク物質における カイラル凝縮とカラー超伝導の競 合 M. Kitazawa,T. Koide,Y. Nemoto and T.K. Prog. of Theor. Phys., 108, 929(2002) 国広 悌二 ( 京大基研) 東大特別講義 2005 年 12 月 5-7 日 Ref.
Phase separation and pair condensation in spin-imbalanced 2D Fermi gases Waseem Bakr, Princeton University International Conference on Quantum Physics.
Electronic structure of topological insulators and superconductors
Nuclear Symmetry Energy in QCD degree of freedom Phys. Rev
Spontaneous Symmetry Breaking and Analogies to the Higgs-Mechanism
Majorana Fermions in Condensed-Matter Physics
Color Superconductivity in dense quark matter
Fermions in the unitary regime at finite temperatures
Ehud Altman Anatoli Polkovnikov Bertrand Halperin Mikhail Lukin
Topological Quantum Computing in (p + ip) Fermi Superfluids:
“fixed” object (phonon)
Cluster and Density wave --- cluster structures in 28Si and 12C---
Chengfu Mu, Peking University
Application of BCS-like Ideas to Superfluid 3-He
QCD at very high density
Addition of Angular Momentum
A possible approach to the CEP location
Tony Leggett Department of Physics
II. Spontaneous symmetry breaking
Presentation transcript:

Edge Currents in Superfluid 3 He-A Films RIKEN, May 21, 2012 Surface States and Edge Currents of Superfluid 3 He in Confined Geometries James A. Sauls Physics Lake Michigan DMR ✓ B ose Condensation of Molecules vs. Cooper Pairs ✓ C hiral Edge States in Superfluid 3He-A Films ✓ G round-State Angular Momentum of 3He-A ✓ T emperature Dependence of Lz (T) ✓ S ensitivity to Boundary Scattering and Topology M. Stone and R. Roy, Phys. Rev. B 69, (2004).Phys. Rev. B 69, (2004) T. Kita, J. Phys. Soc. Jpn. 67, 216 (1998).98). G. E. Volovik, JETP Lett 55,G. E. Volovik, JETP Lett 55, 368 (1992). J. A. Sauls, Phys. Rev. B 84, (2011)

Edge Currents in Superfluid 3 He-A Films RIKEN, May 21, 2012 Introduction to Superfluid 3 He Unconventional BCS Superfluid: S=1 - Spin Triplet L=1 - Orbital p-wave Cooper Pair Amplitude Inhomogeneous States: - relative momentum (p) - Center-of-Mass (R) 9 complex amplitudes S=1 L=1 pxpx p x pypy p y pzpz p z

Edge Currents in Superfluid 3 He-A Films RIKEN, May 21, 2012 Bulk Phase Diagram of Superfluid 3 He B - phase (``isotropic’’) Balian-Werthamer A - phase (``axial’’) Anderson-Morel Nodal Quasiparticles Chiral Axis: L z = ℏ Fully Gapped

Edge Currents in Superfluid 3 He-A Films RIKEN, May 21, 2012 ‣ Balian & Werthamer (1963) Weak Nuclear Dipole Energy : violation: A. Leggett Nuclear Spin Dynamics Superfluid 3 He-B Approximate particle-hole symmetry : violation: Possible SuperSolid Phase A.Vorontsov & JAS FS Translational Invariance Fully Gapped, TRI Superfluid with Spontaneously generated Spin-Orbit Coupling Generator Broken relative spin-orbit symmetry Transverse Sound Acoustic Faraday Effect Transverse Sound Acoustic Faraday Effect G. Moores & JAS G. Moores & JAS Y. Lee et al. Nature 1999 Y. Lee et al. Nature 1999

Edge Currents in Superfluid 3 He-A Films RIKEN, May 21, 2012 Superfluid 3 He-A (``Axial phase’’) Broken time-reversal symmetry Ground state Orbital Angular Momentum Broken relative spin-orbit symmetry Broken relative gauge-orbit symmetry ‣ Anderson & Morel (1962) Ans: Chiral Edge States and Edge Currents L z =(N/2) ℏ (Δ/E f ) p p = 0,1,2 ? L z =(N/2) ℏ (Δ/E f ) p p = 0,1,2 ? Chirality: L z = ℏ Broken 2D Parity Broken T- Symmetry Chirality: L z = ℏ Broken 2D Parity Broken T- Symmetry Broken 2D parity Spin-Mass Vortices Chiral Fermions

Edge Currents in Superfluid 3 He-A Films RIKEN, May 21, 2012 Chiral Superfluids Spin AFM Orbital FM 6 ✤ Chiral Spin-Triplet Superconductivity UPt 3 Sr 2 RuO 4 ‣ A-phase of 3 He Anderson & Morel (PR,1962) strong spin-orbit coupling tetragonal ? hexagonal DD Y.Nagato and K.Nagai, Physica B (2000).

Edge Currents in Superfluid 3 He-A Films RIKEN, May 21, 2012 Bose-Einsten Condensation Macroscopically Occupied Single Particle State One-Particle Density Matrix Long-Range Order Penrose & Onsager Phys. Rev Order Parameter ≝ Macroscopically Occupied State Thermodynamic State Function Superfluidity & Quantum Interference

Edge Currents in Superfluid 3 He-A Films RIKEN, May 21, 2012 Molecular BEC ❖ Cold Fermions with attractive interactions - e.g. 6 Li, 40 K... Two-Particle Density Matrix ✤ Molecular Wave Function ξ ✤ Tightly Bound Bose Molecules: ξ ≪ a ✤ Internal Spin & Orbital Degrees of Freedom, e.g. s 1 =s 2 =½ ➡ Odd Parity, Spin Triplet (S=1): ➡ Even Parity, Spin Singlet (S=0): Macroscopically Occupied Two-Particle Wave Function Even Orbital Angular Momentum: Odd Orbital Angular Momentum: Order Parameter:

Edge Currents in Superfluid 3 He-A Films RIKEN, May 21, 2012 Triplet P-wave Condensates Singlet S-wave Condensates ``Scalar BEC’’ ``Chiral P-wave molecular BEC’’ Ground State Angular Momentum Angular Momentum Density

Edge Currents in Superfluid 3 He-A Films RIKEN, May 21, 2012 Molecular BEC vs. BCS Pairing ✤ Loosely Bound Cooper Pairs: ξ ≫ a ✤ Overlapping Pairs Internal Exchange ✤ Cancellation of Orbital Currents? ξ

Edge Currents in Superfluid 3 He-A Films RIKEN, May 21, Molecular BEC Fermi Sea ✤ Momentum Space: Pair Correlations on the Fermi Shell ✤ Angular Momentum Density in the BCS limit # of pair-correlated Fermions vs BCS Condensation A. J. Leggett, RMP 1975, M. Cross JLTP 1975 & G. Volovik & V. Mineev JETP 1976

Edge Currents in Superfluid 3 He-A Films RIKEN, May 21, Angular Momentum Paradox ✤ Real Space Formulation in Cylindrical Geometries ✤ Integrated Angular Momentum Density in the BCS ~ vs...BEC limits A. Leggett RMP 1975 M. Ishikawa (1977) z independent of (a /ξ)! ✤ McClure-Takagi Theorem: M. McClure, S. Takagi, PRL (1979) For any cylindrically symmetric chiral texture defined by and pair wave function that vanishes on the boundary: ✤ Uniform State: ✤ Mermin-Ho Texture:

Edge Currents in Superfluid 3 He-A Films RIKEN, May 21, N. D. Mermin P. Muzikar PRB (1980) M. Ishikawa (1977) McClure-Takagi gives the correct answer for L z, but... where are the currents? ✤ Gradient Expansion for BEC or BCS Twist current z Sheet Current Amperean current Bulk Supercurrent Uniform Texture

Edge Currents in Superfluid 3 He-A Films RIKEN, May 21, 2012 McClure-Takagi gives the correct answer: but... so... Currents are on the boundary z G. E. Volovik V. P. Mineev M. Ishikawa P. Muzikar D. Mermin T. Kita A. Garg M. Stone R. Roy... JAS, PR B 84, (2011) Tsutsumi & Machida,PR B 85, (R) (2012)

Edge Currents in Superfluid 3 He-A Films RIKEN, May 21, 2012 N TRI p-wave Chiral p-wave Specular - no surface bound states - no pairbreaking Confined 3 He-A Confined 3 He-A l - parallel to the edge ⇒ edge currents Dipole- Locked Edge Reflections ‣ Chiral Edge State - Weyl Fermion G. E. Volovik ‣ Chiral Edge State - Weyl Fermion G. E. Volovik 2D Chiral p-wave Y.Nagato and K.Nagai, Physica B (2000).

Edge Currents in Superfluid 3 He-A Films RIKEN, May 21, 2012 Fermi Sea ✤ Angular Momentum Paradox ✤ Theory of Inhomogeneous BCS States Loosely Bound Cooper Pairs: ξ ≫ a BCS Pairing & the Quasiclassical Scale Inhomogeneous Edge: a ≪ ξ ≪ L 2D A-phase/ 3D A-phase Film

Edge Currents in Superfluid 3 He-A Films RIKEN, May 21, 2012 Coupled Fermions & Pairs Nambu spinors Quasiparticle Spectral function Order parameter - pair spectrum Quasiclassical propagators Gorkov Equations à la Eilenberger Gorkov’s Propagator

Edge Currents in Superfluid 3 He-A Films RIKEN, May 21, D Chiral A-phase with Bulk Solution Bulk spectrum Bound State Pole Propagators for States Near an Edge

Edge Currents in Superfluid 3 He-A Films RIKEN, May 21, 2012 Surface Confinement... Edge States occupied unoccupied Pair of Time-Reversed Edge States ➡ ➡ Chiral Edge States Edge Current ≪ L≪ L a ≪ Weyl Fermion G. E. Volovik Weyl Fermion G. E. Volovik

Edge Currents in Superfluid 3 He-A Films RIKEN, May 21, 2012 Local Spectral Density in out Pair Time-reversed Trajectories Spectral Current Density in out α p’p’ _ p’p’ x = 0.5 ξ Δ

Edge Currents in Superfluid 3 He-A Films RIKEN, May 21, 2012 Local Spectral Density in out Pair Time-reversed Trajectories Spectral Current Density in out α p’p’ _ p’p’ Exact Cancellation Asymmetry in the Occupation x = 0.5 ξ Δ Zero Net Current into the Boundary

Edge Currents in Superfluid 3 He-A Films RIKEN, May 21, 2012 Bound-State Current & Angular Momentum z R x ✤ Number of Fermions: ✤ Galilean Invariance: r Mass Current 2 Too Big vs. MT Continuum States determine Edge Currents M. Stone & R. Roy PRB 2006 JAS, PR B 84, (2011)

Edge Currents in Superfluid 3 He-A Films RIKEN, May 21, 2012 Continuum Spectral Current +Δ+Δ -Δ-Δ Odd:Odd: & confined?

Edge Currents in Superfluid 3 He-A Films RIKEN, May 21, 2012 confined ? ξ CRCR Resonance Effect T = 0 +iΔ -iΔ C1C1 C2C2 M-T !! Continuum Spectral Current Continuum Response to the Edge McClure-Takagi Result Exactly Cancels Bound State L z Exactly Cancels Bound State L z

Edge Currents in Superfluid 3 He-A Films RIKEN, May 21, 2012 Generalized Yosida Function for L z Finite Temperature ξ CRCR C1C1 +iΔ C2C2 Matsubara Representation Takafumi Kita’s ``conjecture’’ J. Phys. Soc. Jpn. 67 (1998) pp Takafumi Kita’s ``conjecture’’ J. Phys. Soc. Jpn. 67 (1998) pp D Mesoscale (R ≃ 2ξ) Numerical BdG 3D Mesoscale (R ≃ 2ξ) Numerical BdG ?? L z (T) is ``soft’’ (2D or 3D) due to thermal excitation of Excited Edge States ρ s|| (T) is ``soft’’ (3D) due to thermal excitation of Nodal QPs L z (T) ρ s|| (T) ρ s ⊥ (T) Y z (T) ≈ 1- c T 2 T ≠ 0 JAS, PR B 84, (2011)Tsutsumi & Machida,PR B 85, (R) (2012)

Edge Currents in Superfluid 3 He-A Films RIKEN, May 21, 2012 R 1, R 2, (R 1 - R 2 ) ⋙ Δ R 1, R 2, (R 1 - R 2 ) ⋙ ξ Δ Edge Currents in a Toroidal Geometry Specular Edge Angular Momentum Sheet Current x Counter-Propagating Currents MT Result !! J1J1 VolumeVolume J2J2

Edge Currents in Superfluid 3 He-A Films RIKEN, May 21, 2012 No Chiral Currents Robustness of the Chiral Edge States Chiral Edge States Specular Reflection in out ➡ in out p p _ Tiny Angular Momentum !! Facetted Surface Chirality Invisible! Retro Reflection

Edge Currents in Superfluid 3 He-A Films RIKEN, May 21, 2012 R 1, R 2, (R 1 - R 2 ) ⋙ Δ R 1, R 2, (R 1 - R 2 ) ⋙ ξ Δ Non-Extensive Scaling of L z Non-Specular Scattering Fraction of Forward Scattering Trajectories Sheet Current - Non-Specular Edge Incomplete Screening of Counter-Propagating Currents L z ≉ V !! J1J1 J2J2

Edge Currents in Superfluid 3 He-A Films RIKEN, May 21, 2012 ‣ Thermal Excitation of Edge States: ≈ 1- c T 2 ≈ 1- c T 2 ‣ Toroidal Geometry & Non-specular Surfaces ⇓ L z is Non-Extensive: L z > (N/2) ℏ or L z (N/2) ℏ or L z < - (N/2) ℏ⇓ Direct Evidence of Edge Currents ‣ Thermal Excitation of Edge States: ≈ 1- c T 2 ≈ 1- c T 2 ‣ Toroidal Geometry & Non-specular Surfaces ⇓ L z is Non-Extensive: L z > (N/2) ℏ or L z (N/2) ℏ or L z < - (N/2) ℏ⇓ Direct Evidence of Edge Currents Detecting Chiral Edge Currents ‣ Gyroscopic Dynamics of Toroidal Disks of 3 He-A J. Clow and J. Reppy, Phys. Rev. A 5, 424–438 (1972). Dissipationless Chiral Edge Currents Dissipationless Equilibrium Angular Momentum Equilibrium Non-Specular Edge Specular Edge ‣ Engineered surfaces - differential Edge scattering Edge Currents

Edge Currents in Superfluid 3 He-A Films RIKEN, May 21, 2012 ‣ Ground-State Currents Confined to Edge on Scale ~ a ≪ ξ ≪ L ‣ Edge Current Originates from Contiuum disturbed by the Surface Bound State ‣ L z = (N/2) ℏ originates from Edge currents on Specular Boundaries ‣ Kita Conjecture: L z (T) ≅ (N/2) ℏ (ρ s|| (T)/ρ) is a accidental ‣ Ground-State Currents Confined to Edge on Scale ~ a ≪ ξ ≪ L ‣ Edge Current Originates from Contiuum disturbed by the Surface Bound State ‣ L z = (N/2) ℏ originates from Edge currents on Specular Boundaries ‣ Kita Conjecture: L z (T) ≅ (N/2) ℏ (ρ s|| (T)/ρ) is a accidental Resumé ‣ Soft Temperature Dependence of L z (T) due thermally excited Weyl Fermions Direct Evidence of Edge Currents ‣ Topology and Non-specular Scattering L z is Non-Extensive: L z >> (N/2) ℏ or L z << - (N/2) ℏ Direct Evidence of Edge Currents ‣ Edge Currents are Not Robust to Surface Scattering: L z < (N/2) ℏ