Physics 11 Mr. Jean January 14 th, 2015. The plan: Video clip of the day Wave reflection Sound Waves in Open Pipe Sound waves in Closed Pipe.

Slides:



Advertisements
Similar presentations
Interference in Thin Films
Advertisements

Chapter 9 Light as a Wave.
G6 Thin-film InterferenceG6 Thin-film Interference.
Thin Film Interference
Thin Film Interference
Waves (in general) sine waves are nice
AP Physics Mr. Jean March 22th, The plan: –Wave interference –Double Slit patterns –Check out chapter #24 Giancoli.
The Wave Nature of Light
AP Physics Mr. Jean March 30 th, The plan: Review of slit patterns & interference of light particles. Quest Assignment #2 Polarizer More interference.
Physics 6C Interference of EM Waves Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB.
Physics for Scientists and Engineers, 6e
Lecture 15 Interference Chp. 36 Opening Demo Topics –Interference is due to the wave nature of light –Hyugens principle, Coherence –Change in wavelength.
Today’s agenda: Thin Film Interference. Phase Change Due to Reflection. You must be able to determine whether or not a phase change occurs when a wave.
Interference Applications Physics 202 Professor Lee Carkner Lecture 25.
C 2001 Wiley, Physics Cutnell & Johnson 5 th Ed. Fig. 27–10 THIN-FILM INTERFERENCE When light shines on a thin film of oil floating on a layer of water,
PHY 1371Dr. Jie Zou1 Chapter 37 Interference of Light Waves (Cont.)
Physics 52 - Heat and Optics Dr. Joseph F. Becker Physics Department San Jose State University © 2005 J. F. Becker.
Double-Slit Interference Path difference  between waves determines phase difference m is an integer: m = 0, ± 1, ± 2,...  d L y  r1r1 r2r2  = d sin.
Newton’s Rings Another method for observing interference in light waves is to place a planoconvex lens on top of a flat glass surface, as in Figure 24.8a.
6. Interference by thin films t No phase shift (if n 2 < n 1 ) Phase shift -_____ (if n 2 > n 1 ) If there is a very thin film of material – a few wavelengths.
Interference Applications Physics 202 Professor Lee Carkner Lecture 25.
Interference Applications Physics 202 Professor Lee Carkner Lecture 23.
Supplementary Material This set of slides contains material dealing with thin films and with the Michelson Interferometer. Both of these phenomena can.
Physics 1161: Lecture 20 Interference textbook sections
Chapter 37 Wave Optics. Wave optics is a study concerned with phenomena that cannot be adequately explained by geometric (ray) optics.  Sometimes called.
Announcements HW set 9 due this week; covers Ch 23 and Ch Office hours: My office hours Th 2 -3 pm or make an appointment Come to class April 19.
6. Interference by thin films
Lecture 15 Interference Chp. 35 Topics –Interference from thin films –Due to the wave nature of light –Change in wavelength and phase change in a medium.
Interference and the Wave Nature of Light
It is against the honor code to “click” for someone else-violators will loose all clicker pts. HITT RF Remote Login Procedure: 1. PRESS AND HOLD THE DOWN.
Phase Change on Reflection To understand interference caused by multiple reflections it is necessary to consider what happens when a light wave moving.
CHAPTER 37 : INTERFERENCE OF LIGHT WAVES
EXAMPLE Young’s double-slit experiment is performed with 589-nm light and a distance of 2.00 m between the slits and the screen. The tenth interference.
Chapter 27 Interference and the Wave Nature of Light.
AP Physics B Summer Course 年 AP 物理 B 暑假班 M Sittig Ch 23: Waves.
Thin films The index of refraction (h) for a medium is defined as the speed of light in vacuum (c) divided by the speed of light in the medium(v).
Chapter 24: Thin Films Diffraction Diffraction Grating.
Diffraction is the bending of waves around obstacles or the edges of an opening. Huygen’s Principle - Every point on a wave front acts as a source of tiny.
Interference Patterns Constructive interference occurs at the center point The two waves travel the same distance –Therefore, they arrive in phase.
Interference Patterns Constructive interference occurs at the center point The two waves travel the same distance –Therefore, they arrive in phase.
Interference Applications Physics 202 Professor Lee Carkner Lecture 25.
Thin Film Interference II. Thin Film Whiteboard I! White light is incident upon a type I thin film from above, as shown below. Then, the thickness of.
A water wave is incident on a breakwater as sketched below. Use Huygen’s principle to make a careful sketch the form of the waves on the back side of the.
Ch 16 Interference. Diffraction is the bending of waves around obstacles or the edges of an opening. Huygen’s Principle - Every point on a wave front.
Lecture 24 Interference of Light.
Thin Film Interference Use Polarizing Film & Plastic Wrap.
IB Physics 11 Mr. Jean January 22 nd, The plan: Video clip of the day Polarization.
Wave Optics.
Physics 1C Lecture 27A. Interference Treating light as a particle (geometrical optics) helped us to understand how images are formed by lenses and mirrors.
Physics 11 Advanced Mr. Jean May 23 rd, The plan: Video clip of the day Wave Interference patterns Index of refraction Slit & Double Slit interference.
Today’s agenda: Thin Film Interference.
Physics 11 Advanced Mr. Jean May 28 th, The plan: Video clip of the day Wave Interference patterns Index of refraction Slit & Double Slit interference.
Interference of Light Waves
Sunlight, as the rainbow shows us, is a composite
Thin Film Interference Interference + Light. Superposition t +1 t +1 t Destructive Interference Out of Phase 180 degrees.
Chapter 24: Young’s Experiment Llyod’s Mirror Thin Films.
Refraction The bending of light due to a change in speed.
Physics 11 Advanced Mr. Jean May 29 th, The plan: Video Clip of the day Modern Physics –Relative motion –Light is a problem Einstein’s change to.
Chapter 24 Wave Optics. Young’s Double Slit Experiment Thomas Young first demonstrated interference in light waves from two sources in Light is.
Lecture 26-1 Lens Equation ( < 0 )  True for thin lens and paraxial rays.  magnification m = h’/h = - q/p.
Physics 11 Mr. Jean June 8th, 2012.
Lens Equation ( < 0 ).
Today’s agenda: Thin Film Interference.
Interference of Light Waves
Interference and the Wave Nature of Light
Interference.
Interference of Light Waves
Today’s agenda: Thin Film Interference.
A water wave is incident on a breakwater as sketched below
Presentation transcript:

Physics 11 Mr. Jean January 14 th, 2015

The plan: Video clip of the day Wave reflection Sound Waves in Open Pipe Sound waves in Closed Pipe

Here is a really fancy drawing showing the geometry of the path lengths. We have two slits, S1 and S2. Two rays are shown - the straight lines that go from the slits to the point P.

m  fringe number This is the equation you will have available on the AP Physics Test. Use it wisely. You end up with a central bright fringe. This is the zeroth-order maximum (m = 0). You can see that the angle  would be zero for this fringe. The bright central fringe is bracketed by a series of smaller bright fringes for the different integer values of m. The next set of fringes is the first-order maximum, then we have the second- order maximum, and so on.

Demonstrations: to Videos worth checking out: – –Topic: “Light”

Light Interference:

Example Problem:

Example:

Light Slit pattern: Lab video demonstrations –Lab 7.1, 7.2 & 7.3

Doppler Effect: s/vibration-and-waves/doppler-effect/ s/vibration-and-waves/doppler-effect/

x xx xxxx xxx x xxxx xxxxxx Subsonic

xx x x x x x x x x xx x Supersonic

Standing Waves: s/vibration-and-waves/standing-waves/ s/vibration-and-waves/standing-waves/

Brewster’s Angle: When light encounters a boundary between two media with different refractive indices, some of it is usually reflected. The fraction that is reflected is dependent upon the incoming light's polarization and angle of incidence. At some point this light source will be entirely polarized thus causing no reflected light to be visible through Polaroid.

Brewster’s Angle Demonstration: Lab Demo sources/bu_semester2/c27_brewster.html

Phase Change: Reflection & Phase: –Light reflecting from a boundary can do so in phase (sort of a free end reflection) or out of phase (a fixed end reflection). (Spring vs. Spring with rope) –The thing that determines whether the reflected wave is in or out of phase is the difference in speed for light in the two media. –The wave will undergo a 180  phase change when it is reflected from a medium that has a higher index of refraction than the one it came through.

Phase Change:

There will be no phase change if the wave is reflected from a medium that has a lower refractive index. Ex: You would get the phase change for light traveling through air and reflecting off glass. Glass has a higher index of refraction than air. Ex: You would not get a phase change for light traveling through glass and being reflected off water, since water has a lower index of refraction than glass.

Thin Film Interference: Thin Film Interference: This occurs when light travels through a very thin layer of transparent material. Thin film interference occurs with oil films, soap bubbles, etc. Light that is incident on the film has several things happen to it. –Some of the light is reflected off the top of the film. These waves have a 180  phase change since the index of refraction for the film is greater than for air. –Next, the light that goes into the film is refracted as it travels from air into the film. Some of the light goes into the air on the other side of the film. This light is refracted (back the other way). –Finally, some of the light is reflected off the air/film surface. This light does not undergo any phase change.

The film has a thickness of t. We let n be the index of refraction for the film. The index of refraction for air is, of course, 1. Ray 1 reflecting off the surface of the film has a 180  phase change. Ray 2 reflecting off the opposite film surface has no phase change. The two rays are out of phase.

Thin Film Problems: The two waves will recombine when you look into the film and the rays enter your eyes. If the path difference is half of the wavelength, or an odd multiple of the wavelength, then the waves will end up in phase and you will see constructive interference – a bright fringe. The basic kind of problem involves finding the minimum thickness that will cause constructive or destructive interference. This minimum would be when the wave came straight down onto the film. This means that the angle of incidence is zero.