Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 35: November 24, 2014 Inductive Noise
Today Inductive Responses –Show math, but let’s not get bogged down in Calculating L Where do inductances show up Impact of inductance on digital circuits How address –Want to make sure we get to last two Penn ESE370 Fall DeHon 2
Response What happens here? Penn ESE370 Fall DeHon 3
LC Response Penn ESE370 Fall DeHon 4 V2V2
LC Response Penn ESE370 Fall DeHon 5
LC Response Penn ESE370 Fall DeHon 6
LC Response Penn ESE370 Fall DeHon 7
LC Response Penn ESE370 Fall DeHon 8
LC Response Penn ESE370 Fall DeHon 9
LC Response Penn ESE370 Fall DeHon 10
LC Response Penn ESE370 Fall DeHon 11
Response? Penn ESE370 Fall DeHon 12
RLC Response Penn ESE370 Fall DeHon 13 V2V2
RLC Response Penn ESE370 Fall DeHon 14
RLC Response Penn ESE370 Fall DeHon 15
Solving for w Penn ESE370 Fall DeHon 16
RLC Penn ESE370 Fall DeHon 17
RLC Penn ESE370 Fall DeHon 18
RLC For What happens? –Oscillation Asumming R>0, what else happens? –Decay Penn ESE370 Fall DeHon 19
DecayOscillation RLC For Penn ESE370 Fall DeHon 20
RLC Response (R=100) Penn ESE370 Fall DeHon 21
When Oscillate For what R does this particular circuit oscillate? Penn ESE370 Fall DeHon 22
RLC Response Penn ESE370 Fall DeHon 23
Inductance of Wire Penn ESE370 Fall DeHon 24
Inductance: Wire over Ground Plane Inductance per cm with h=3mil, w=5mil? Penn ESE370 Fall DeHon 25
Lwire Penn ESE370 Fall DeHon 26 C and L per unit length
Chip Inductance C wire = 0.16 pF for the 1mm) C wire = 0.16nF/m Permeability 0 ≈ Si02 =12.6×10 -7 H/m Permitivity ox =3.5× F/m Penn ESE370 Fall DeHon 27
On Chip C wire = 0.16 pF for the 1mm) C wire = 0.16nF/m Permeability 0 ≈ Si02 =12.6×10 -7 H/m Permitivity ox =3.5× F/m pH (for 1 mm) Penn ESE370 Fall DeHon 28
Comparisons 5mil trace on PCB (preclass 2) Protoboard wires (0.6mm diameter) –About 7nH/cm – On chip wire –0.28nH/mm = 2.8nH/cm Penn ESE370 Fall DeHon 29
Inductors Bond pads Chip leads Long wire runs Cables Penn ESE370 Fall DeHon 30 Src:
Where Arise Penn ESE370 Fall DeHon 31
Signal Path Penn ESE370 Fall DeHon 32
Power Ground Penn ESE370 Fall DeHon 33
Shared Power/Ground Example: 74x04 Penn ESE370 Fall DeHon 34
Estimate R eq, C eq for gates in parallel –R 0 = 25K –C 0 = 0.01 fF say 10C 0 =0.1fF for typical load 250 gates switching at clock R eq = 100 C eq =25fF Assume L=1nH How long to settle? Oscillate? Penn ESE370 Fall DeHon 35
Power Ground Penn ESE370 Fall DeHon 36
RLC Response Penn ESE370 Fall DeHon 37
Today’s Chips How many gates? Penn ESE370 Fall DeHon 38
Multiple Power/Ground Pins Use many power/ground pins How many pins on a package? Divide switching gates by pins –To get effective load on each pin Penn ESE370 Fall DeHon 39
How Improve Penn ESE370 Fall DeHon 40
How Improve? Collect thoughts Penn ESE370 Fall DeHon 41
Minimize the L Make wires short Use power and ground planes –Think of power plane as a very wide wire Impact on C and L? Penn ESE370 Fall DeHon 42
Flip Chip, Area IO Penn ESE370 Fall DeHon
Add Good C’s Bypass Capacitors – inside the inductances –On board –On package –On chip Penn ESE370 Fall DeHon 44
Bypass Capacitor Example Penn ESE370 Fall DeHon 45
Bypassed Supplies transistor) Penn ESE370 Fall DeHon 46
Bypassed Output Penn ESE370 Fall DeHon 47
Minimize Current Draw More Power/Ground Pins Slower rise/fall times Spread out switching Penn ESE370 Fall DeHon 48
Idea Long wires are inductive –Avoid them –Especially on power supplies Bypass capacitors help Penn ESE370 Fall DeHon 49 DecayOscillation
Admin Tuesday: Project 2 due Wednesday Lecture –Penn says “Wed. 11/26” is logically a Friday Friday 11/28 is Thanksgiving Holiday Penn ESE370 Fall DeHon 50