XVIII International Baldin Seminar on High Energy Physics Problems "RELATIVISTIC NUCLEAR PHYSICS & QUANTUM CHROMODYNAMICS“ Dubna, September 27, 2006 Relativistic.

Slides:



Advertisements
Similar presentations
Kerstin Sonnabend, IKP, TU Darmstadt S-DALINAC - Nuclear Astrophysics Nuclear Astrophysics at the Darmstadt superconducting electron linear accelerator.
Advertisements

Hadron physics with GeV photons at SPring-8/LEPS II
Neutron detectors and spectrometers 1) Complicated reactions → strong dependency of efficiency on energy 2) Small efficiency → necessity of large volumes.
Tomsk Polytechnic University1 A.S. Gogolev A. P. Potylitsyn A.M. Taratin.
S. Sidorchuk (JINR, Dubna) Dubna Radioacive Ion Beams DRIBsIII: STATUS and PROSPECTS S. Sidorchuk (JINR, Dubna) 9-16 May 2013, Varna, Bulgaria 1.
Mass Analyzer of SuperHeavy Atoms Some recent results 2012 Student Practice in JINR Fields of Research 9.oct.2012 I. Sivacekflerovlab.jinr.ru.
Study of the fragmentation of Carbon ions for medical applications Protons (hadrons in general) especially suitable for deep-sited tumors (brain, neck.
Limits of Stability Neutron Drip Line? Proton Drip Line? Known Nuclei Heavy Elements? Fission Limit?
Delta-Sigma experiment First measurement of the cross section ratio in charge-exchange (np) reactions on H 2 /D 2 at 0° and T = 1, 1.2 GeV Dubna, Joint.
Nuclear Level Densities of Residual Nuclei from evaporation of 64 Cu Moses B. Oginni Ohio University SNP2008 July 9, 2008.
HYP03 Future Hypernuclear Program at Jlab Hall C Satoshi N. Nakamura Tohoku University 18 th Oct 2003, JLab.
XXII International Baldin Seminar on High Energy Physics Problem Baldin A.A. 2, Goryachev V.S. 1, Zhigareva N.M. 1, Kirin D.Yu. 1, Konstantinov A.V. 2,
Applications of neutron spectrometry Neutron sources: 1) Reactors 2) Usage of reactions 3) Spallation sources Neutron show: 1) Where atoms are (structure)
Isotopically resolved residues produced in the fragmentation of 136 Xe and 124 Xe projectiles Daniela Henzlova GSI-Darmstadt, Germany on leave from NPI.
Future usage of quasi-infinite depleted uranium target (BURAN) for benchmark studies Pavel Tichý Future usage of quasi-infinite depleted uranium target.
23 July 2010FLNR Dubna Summer Students Practice Flerov Laboratory of Nuclear Reactions, JINR, Dubna 2010 JINR, Dubna 2010 Studies with radioactive ion.
Radioactive ion beam facilities How does they work ? 2012 Student Practice in JINR Fields of Research 9.oct.2012 I. Sivacekflerovlab.jinr.ru.
High momentum protons from 12 C fragmentation at intermediate energy B.M.Abramov, P.N.Alekseev,Yu.A.Borodin,S.A.Bulychjov, I.A.Dukhovskoy, A.B.Kaidalov,
Omega meson in nucleus, experimental study K. Ozawa (Univ. of Tokyo)
Fast Simulation of TOF Response A.Galoyan, LPP, JINR, Dubna Used model.
Topology of multifragmentation of light relativistic nuclei by P. I. Zarubin, JINR On behalf of the BECQUEREL Collaboration All this and more on the Web.
Neutron scattering systems for calibration of dark matter search and low-energy neutrino detectors A.Bondar, A.Buzulutskov, A.Burdakov, E.Grishnjaev, A.Dolgov,
Measurements of Neutron-Proton Spin Observables at 0° using Highest Energy Polarized d, n Probes L.N. Strunov Dubna “Delta-SIgma” Experiment Joint Institute.
Self-similarity of hadron production in pp and AA collisions at high energies D.A. Artemenkov, G.I. Lykasov, A.I. Malakhov Joint Institute for Nuclear.
Sep. 2003CNS Summer School Feb 分 => Talk なら 35 枚だが、 lecture だと少なめ? 50 分 => Talk なら 35 枚だが、 lecture だと少なめ?
Yury Gurchin June 2011 MEASUREMENT OF THE CROSS-SECTION IN DP-ELASTIC SCATTERING AT THE ENERGIES OF 500 AND 880 MEV AT NUCLOTRON.
1 The results of the study of dp-elastic scattering at the energies from 500 to 1000 MeV/nucleon A.A Terekhin et al. Joint Institute for Nuclear Research,
G.Shirkov, Basic Facilities, JINR Scientific Council, Status of the Basic Facilities at JINR G.Shirkov 1.Basic Facilities Operation and development.
COSMIC RAY PHYSICS WITH AMS Joseph Burger MIT On behalf of the AMS-02 collaboration EPS2003 Aachen Particle Astrophysics July 17, 2003
Proton Polarimetry at the U-70 Facility Sandibek Nurushev Institute for High Energy Physics, Protvino, Russia International Seminar on High Energy Spin.
RIKEN/Tokyo-Russia Collaboration of Polarized Deuteron Experiments CNS, Univ. of Tokyo T. Uesaka.
Status of the Source of Polarized Ions project for the JINR accelerator complex (June 2013) V.V. Fimushkin, A.D. Kovalenko, L.V. Kutuzova, Yu.V. Prokofichev.
RNB Cortina d’Ampezzo, July 3th – 7th 2006 Elisa Rapisarda Università degli studi di Catania E.Rapisarda for the Diproton collaboration 18 *
Study of Electromagnetic Interactions of Light Ions in the Framework of the IHEP Ion Program at U70 Serguei Sadovsky, IHEP, Protvino EMIN-2009, Moscow,
Lecture 9: Inelastic Scattering and Excited States 2/10/2003 Inelastic scattering refers to the process in which energy is transferred to the target,
Experimental Studies of Spatial Distributions of Neutrons Produced by Set-ups with Thick Lead Target Irradiated by Relativistic Protons Vladimír Wagner.
Rare Isotope Spectroscopic INvestigation at GSI. abrasion ablation  σ f [cm 2 ] for projectile fragmentation + fission  luminosity [atoms cm -2 s -1.
NS08 MSU, June 3rd – 6th 2008 Elisa Rapisarda Università degli studi di Catania E.Rapisarda 18 2.
TENSOR POLARIZED DEUTERON BEAM AT THE NUCLOTRON Yu.K.Pilipenko, V.P.Ershov, V.V.Fimushkin, A.Yu.Isupov, L.V.Kutuzova, V.P.Ladigin, N.M.Piskunov, V.P.Vadeev,
Overview of Ion-Ion validation KOI, Tatsumi SLAC National Accelerator Laboratory 1Geant4 Collaboration workshop
STATUS OF PREPARATION OF dp-ELASTIC SCATTERING STUDY AT THE EXTRACTED BEAM OF NUCLOTRON. Yu.V.Gurchin LHE JINR September 2009.
Light nucleus clustering in fragmentation above 1 A GeV N. P. Andreeva a, D. A. Artemenkov b,V. Bradnova b, M. M. Chernyavsky c, A. Sh. Gaitinov a, S.
Test beams status  Protvino source: V. Ammosov  Dubna source: P.Rukoyatkin, E.Strokovsky Václav Vrba Institute of Physics, AS CR, Prague – LCTW09, LAL,
J-PARC でのハイパー核ガンマ線分光実験用 散乱粒子磁気スペクトロメータ検出器の準備 状況 東北大理, 岐阜大教 A, KEK B 白鳥昂太郎, 田村裕和, 鵜養美冬 A, 石元茂 B, 大谷友和, 小池武志, 佐藤美沙子, 千賀信幸, 細見健二, 馬越, 三輪浩司, 山本剛史, 他 Hyperball-J.
Master thesis 2006 Shirotori1 Hypernuclear gamma-ray spectroscopy at J-PARC K1.8 beam line 東北大学大学院理学研究科 原子核物理 白鳥昂太郎.
The NSCL is funded in part by the National Science Foundation and Michigan State University. RIA R&D is funded in part by the U.S. Department of Energy.
FRAGMENTATION OF RELATIVISTIC 10 C NUCLEI IN NUCLEI EMULSION K. MAMATKULOV JINR, Dubna September.
Fragmentation of relativistic 9 Be and 14 N nuclei in nuclear track emulsion D. A. Artemenkov JINR, Dubna BECQUREL Collaboration web site:
Measurements of a Three- Dimensional Field Distribution of Spectrometric Magnet of "Delta-Sigma" Set-up for Spin Physics Experiments I.P. Yudin, S.A. Dolgii,
1 Polarized Proton Beam Acceleration at Nuclotron with the use of the Solenoid Siberian Snake Yu.N. Filatov 1,3, A.D. Kovalenko 1, A.V. Butenko 1, A.M.
The experimental evidence of t+t configuration for 6 He School of Physics, Peking University G.L.Zhang Y.L.Ye.
Proposal for the End Station Test Beam (ESTB) at SLAC John Jaros ALCPG09 Albuquerque September 30, 2009.
Search for direct evidence of tensor interaction in nuclei = high momentum component in nuclei = TERASHIMA Satoru 寺嶋 知 Depart. of Nuclear Science and Technology,
Investigation of Coherent Dissociation 10 C Nuclei at an Energy of 1.2 A GeV Mamatkulov Kahramon LHEP, JINR, Dubna JSPI, Uzbekistan EMIN’ October.
Study of Hypernuclei with Heavy Ion Beams (HypHI) at GSI Shizu Minami GSI, Germany on behalf of HypHI collaboration Introduction Phase 0 experiment R.
Рабочее совещание «Перспективы метода ядерной эмульсии»
Diagnostics of FRIBs beam transport line
Giant Monopole Resonance
Selected Problems of Relativistic Nuclear Physics and Multiple Particle Production
Статус проекта БЕККЕРЕЛЬ и планы
of secondary light ion beams
of secondary light ion beams
Single trigger, no target

Mitja Majerle NPI CAS Řež, Czech Republic
Project "Nuclotron M" / NICA
Rare Isotope Spectroscopic INvestigation at GSI
Rare Isotope Spectroscopic INvestigation at GSI
Status and perspectives of the LNS-FRIBS facility
Rare Isotope Spectroscopic INvestigation at GSI
Presentation transcript:

XVIII International Baldin Seminar on High Energy Physics Problems "RELATIVISTIC NUCLEAR PHYSICS & QUANTUM CHROMODYNAMICS“ Dubna, September 27, 2006 Relativistic Secondary Nuclei Fragments Beams: a resent years practice at LHE P.A. Rukoyatkin, L.N. Komolov, R.I. Kukushkina, V.N. Ramzhin, P.I. Zarubin Veksler and Baldin Laboratory of High Energies Joint Institute for Nuclear Research Supported by Russian Foundation for Basic Research ( )

LHE Accelerator Facility Polaris – d  EBIS – N, Ar, Fe … Laser – Li, B, C, F, Mg … Duoplasmotron – p, d, , 3 He Internal target Experimental hall 1B Experimental hall 205 Experimental hall NUCLOTRON – 6 GeV/n SYNCHROPHASOTRON

Beam Nuclotron beam intensity (particle per cycle) CurrentSrc. typeIon source devel. + booster * p 5  Duoplasmotron 1  d 5  #  He 3  #  dd 2  10 8 ABS (“Polaris”) 7 Li 4  10 9 Laser 5  ,10 B 1  10 9,8 --- # C 2  #  Mg 1  # N 1  10 7 ESIS (“Krion-2”) ** 5  Ar 2  #  Fe 1  # Xe 2  U 1  10 8 * A.V. Butenko et al., EPAC 2002 ** E.D. Donets et al., Rev. Sci. Instr. 75, (2004) Some Nuclotron beams

Extraction angle, hor./ ver. mr5 / 96 Momentum range Z/A = 1/2Gev/c/amu0.6 – 6.8 Momentum spread,  %0.04 – 0.08 Extraction time sec10 Beam emittance P max mm  mr22 Beam size in a waist,  P max mm< 1 Extraction efficiency %> 90 Beam profiles at the F 5 focus. Deuterons, p beam = 4.3 GeV/c,  x = 2.6 mm,  y = 3.0 mm x, mm y, mm Nuclotron slow extraction V.Volkov et al., EPAC 2004 An extracted beam spill (Nuclotron Dec run)

f3 f4 f5 f6 VP-1 1v 3v 4v 5v Slowly extracted beam 6v Bending magnets Quadrupole lenses Dump, shield Nuclotron external beam lines Lines P max I max ( GeV/c ) ( ppc ) VP v v v v v MARUSYA STRELA GIBS DELTA-SIGMA FAZA SPHERA NIS Polarized Proton Target f3 experimental area

A 0, Z 0, p 0 A 0, Z 0, p 0 +  (A i, Z i, p 0 ) 00 A 0, Z 0 p 0 A i /Z i p 0 A k /Z k Primary beam Target Separation systemAnalyzing detectors Projectile fragments Secondary relativistic fragments beams: a general scheme 00 00 Primary beam dump Tagging detectors (option) p 0 -- projectile momentum per nucleon

Secondary relativistic fragment beams: relations Fragment angular and relative momentum spread in the laboratory frame Fragment momentum spread in the projectile rest frame  0  90 MeV/c A – projectile mass number B – fragment mass number A.S. Goldhaber, Phys. Lett. 53B, p.306 p 0 – projectile momentum per nucl.  0 – projectile velocity m – nucleon mass A numerical illustration 10 B  8 B ( A=10, B=8 ) at p 0 = 2 GeV/c/nucl.  t 0  1.3 GeV/nucl.) :    7.5 mr,    1.8 %

Secondary relativistic fragment beams: rigidity scale neighborhood Example: 10 B  8 B fragmentation 3 He 7 Be 8B8B (p-p 0 )/z, %

d  + A → n  + … The lightest relativistic fragment beams P  4.5 GeV/c, I * pol. = Line/setup: 1v (NBL) / PPT, DELTA-SIGMA Czech. J. Phys., Vol.52, C695 P = 6.0; 9.0 GeV/c, I *  10 6 Line/setup: 6v / GIBS JINR Rap. Comm., 6[86]-97, p.61 P  1 – 4.5 GeV/c I * pol. = 2 – , I * unol.  10 8 Polarization  0.55 Line/setup: 1v (NBL) / PPT, DELTA-SIGMA Czech. J. Phys., Vol.51, A345 (*) -- per cycle at P max d + A → n + … d  + A → p  + …  + A → t + …

Physics of Atomic Nuclei, v.66, 2003, p.1646

Beam by reactions 6 Li + A  Nucleus + … Primary beam: 6 Li, t = 1.9 GeV/amu, (p = 2.67 GeV/c/amu ) Intensity  5·10 7 nuclei/cycle (Synchr.) Beam sizes on a target:  x < 4 mm,  y < 8 mm Target: organic glass, 4.7 g/cm 2, at F 5 Secondary beam (4v line):(4v line) p/ Z = 8.0 GeV/c (Z/A=1/3), p/ Z = 5.35 GeV/c (Z/A=1/2); Intensity  10 4 nuclei/cycle (Z/A=1/3); y 1, mm y 2, mm Vertical beam profiles at two positions before emulsion. Beam divergence relatively to the emulsion layers -   y < 2.5 mr  y1  12.5  y2  8 Z=1 Z=2 Z=3 6 Li 6 He t QDC channels Z/A=1/3 Z/A=1/2  d Yields ratios, %: d :  = 51  3; 6 He : t = 0.85  0.05

f3 f4 f5 f6 VP-1 3v Extracted beams: 12 C, 10 B, 7 Li Target: 5-8 g/cm 2, polyeth. Fragment separation scheme: beam line layout

2SP-40 f5 Fragment separation scheme: detector layout S0S0 Multiwire ionization chambers (P9a, P10, P13, P13a, P14, P16 ) Scintillation counter (S i )  x = 6  x = 12

Fragment separation: an optics scheme and realized resolution Distance along beam line, m R=r 16 /E x, r 16 – linear dispersion, E x = 2  x – envelope size Bars – normalized strengths of magnetic elements FWMH p /p  2.7%

Z=5 (primary 10 B mark) 4 ( 9 Be ) 3 2 QDC channels Counts Secondary fragments beam: 10 B + A  9 Be + … Target: Polyethylene, 8 g/cm 2 Placing – F3 focus Separation scheme: VP-1, f3 – f5 + 2SP-40,   2SP-40 = 0.22 r Analyzer: Plastic scintillator, d=5 mm 9 Be fraction in the beam: 67 ± 2 % Primary beam momentum: p 0 = 2.0 GeV/c / nucl. Energy losses spectrum in a plastics

C 3 He Secondary fragments beam: 12 C + A  9 C + … ( p 0 = 2.0 GeV/c/nucl ) Z 6  51% QDC channels Energy losses spectrum in a plastics Counts

Secondary fragments beam: 10 B + A  8 B + … (p 0 = 2.0 GeV/c/nucl ) Z 5  62% 8B8B 10 C 7 Be 3 He QDC channels Energy losses spectrum in a plastics Counts

Secondary fragments beam: 7 Be Production reaction: 7 Li + A  7 Be + … Beam rejection variant 1 Y 4 : Y  1 : 3.3 Beam rejection variant 2 Y 4 : Y 1+2+…  1.9 : 1 7 Be Be atom – T 1/2  53.4 d (e-cap.) 7 Be nucleus – stable

7 Be fragmentation channels N.G. Peresadko et al., arXive:nucl-ex/ v1

Conclusion Nuclotron accelerator facility flexibly provides experiments with a wide set of primary nuclei beams (p … Fe) in the energy range from hundreds MeV to several GeV per nucleon. In-flight production of secondary relativistic nuclear fragment beams are widely practiced at the facility. Secondary beams of the beryllium, boron and carbon isotopes were recently formed to study the nuclei clustering by the nuclear emulsion method.

End

x, mm y, mm Beam profiles Relativistic tritium beam Production reaction:   + A  t + X  x  10  y  10 Beam line scheme: D 1..6 – quadrupole doublets, M 1..3 – bending magnets, GIBS – setup. TOF base  78 m. Target Triton momentum – 6 GeV/c Momentum spread (  ) – 1.6 % ( TOF tagging was used) Yeild at the line end – 5  I Target – polystyrene, 5 g/cm 2 p  = 8 GeV/c ( I   10 9 ppc ) Momentum distribution    1.6  p, % Ref.: S.A. Avramenko et al., JINR Rap. Comm., 6[86]-97, p. 61; S.A. Avramenko et al., Nucl. Phys. A 596, p. 355

Emuls. Beam by reactions 6 Li + A  Nucleus + … Optics scheme and detectors layout 6 Li