Mercury in Western Mountains Mark Williams, CU-Boulder
Problem Statement Concern for mercury arose from human health effects caused by mercury ingestion from freshwater and marine fish, in which mercury bioaccumulates Documented bioaccumulation of mercury in fish has occurred in many high elevation lakes in Sweden (Johansson et al., 1995) In 1998, five water bodies in Colorado were put on the EPA section 303(d) list for impaired water bodies – Hg content in fish exceeded advisory levels of 0.5mg kg -1
MERCURY and BRAIN FOOD Mercury is toxic to the developing fetal brain Exposure to mercury in the womb can cause learning deficiencies and delay mental development in children
Mercury in the Environment In a recent EPA report to Congress (1994), they pointed to coal fired utilities as the major anthropogenic source of mercury It is suggested that deposition of mercury and organochlorines may increase with elevation because of cold condensation and orographic precipitation (grasshopper effect) This may be cause for concern in warm mid- latitude climates where water resources fall mainly in the form of snow (70%)
MeHg is toxic form
Forms of Mercury (Hg) Elemental (inorganic) mercury –Total mercury –Dissolved mercury (Hg content after filtering) –Less toxic form of mercury Methylmercury (MeHg) –Toxic –Produced by bacterial transformations of inorganic Hg to MeHg –Anoxic conditions appear to increase rate of MeHg
NOT A PROBLEM IN THE WEST?
Mercury Loading in Wetfall
Mast et al. 2006: ROMO Hg
Mercury Deposition 10 g m -2 yr -1 –Higher than Buffalo Pass MDN for –Similar to midwest, NE US with Hg warnings Summer deposition 3-4 times > winter Basin export about 2 g m -2 yr -1 Basin accumulation about 80% of wet dep MeHg: little export
Hg export greatest on rising limb
Total Hg concentrations in stream waters track DOC Little MeHg export What does occur is on rising limb Loch Vale catchment
High correlation between THg and DOC (Loch outlet)
Summary Atmospheric dep of Hg high because of moderate concentrations with high precip 80% of atm dep retained in basin –Basins accumulating mercury –Hg export limited by DOC production > 50% of annual Hg export during first 6 weeks of snowmelt from flushing of soils –-Flowpaths important! MeHg production (the bad stuff) appears limited
Paleorecords: Mercury Accumulation in Alpine Lakes, Colorado David Manthorne, USGS Mark Williams, CU-Boulder
MOUNTAINS ENHANCE MERCURY PROBLEMS Snowfall increases with elevation –Mercury deposition may increase with altitude Mercury transport associated with carbon –Carbon transport increases during snow melt –Mercury transport from soils to lakes may be greater than in catchments without snow melt Increasing nitrogen deposition –May increase lake productivity –May increase mercury sequestration in lakes
Study Objectives 1)To compare wet vs. freeze-dried methods 2)To evaluate trends in mercury accumulation in alpine lakes of Colorado 3)Place these results in context by comparing to other sites 4)Evaluate other factors that may worsen Hg accumulation in Colorado lakes: 1)Cold-condensation 2)Increasing Hg deposition with elevation 3)Snow melt 4)Increased carbon production from N deposition 5)Fires
Sulfate/Mercury emissions (1,000/yr SO 2 ) Sulfate deposition Pris t ine Lake Navajo Lake Black Lake Green 4,5 Denver Navajo, San Juan PP Hayden, Craig
Lake Sediment Cores - Sample Collection Lake sediment cores were collected with gravity corer from each lakes deepest point Samples were extruded in the field in.5 to 1cm intervals Samples were kept cold until they could be frozen Wet and freeze-dried samples were digested and analyzed with CVAFS
Methods Lake sediments were dated with 210 Pb activity Sediment mass accumulation was calculated as the dry weight per section and years each section represented Hg mass flux per section calculated as Hg concentration times sediment accumulation Hg flux ratios were calculated as surface Hg flux divided by background Hg flux
Digestion Comparison - Concentrations Black Lake Concentrations Navajo Lake Concentrations
Dating sediments What we have is the depth where the sediments were collected Use lead-210 ( 210 Pb) values to date the various depths of each individual core Correlate lead-210 values with sediment depth for each core Convert sediment depth in core to age
Hg Concentrations in Sediment
Sediment Accumulation Rates
1825 Hg Flux Ratio = 4.4
1821 Hg Flux Ratio = 4.0
1841 Hg Flux Ratio = 3.8
Hg Flux Ratio = 3.2
Hg Flux Ratio = 3.0
Mass Flux Ratios Divide present-day mercury fluxes by pre- industrial mass fluxes Pre-industrial defined as prior to 1850 –Take average of pre-1850 fluxes Present-day harder to say; maybe last ten years? Normalizing the percent increase in mercury fluxes against background values
Front Range Lakes – Historical trends
MERCURY DEPOSITION INCREASING IN FRONT RANGE Highest rates of mercury accumulation in history are now Mercury accumulation will get worse before it gets better Front Range lakes and reservoirs at risk Brown cloud?
West Side Lakes – Recent Decline?
POWER PLANTS ??? Unclear why max rates have declined since mid-60’s Difficult to obtain information on emissions Stack heights increased? Future trends unclear
SOUTHWEST CO: COMPROMISED DATA Mining activity comprised data USGS snow survey: highest mercury content in SW CO Need additional samples
NUTRIENT ENRICHMENT PRISTINE LAKE
NUTRIENT ENRICHMENT ENHANCES Hg IN LAKES
POWER PLANT EMISSIONS Mercury sources Nitrogen sources Stimulate algal production in lakes Enhanced lake productivity increases mercury sequestration More mercury enters the food chain
Mercury and DOC in Streamwaters Mast (unpublished), 2001
CARBON and MERCURY TOC/DOC increases mercury transport to lakes and reservoirs DOC increases production of MMHg DOC mobility increases during snow melt Alpine areas at risk
MERCURY AND WILDFIRES: A SMOKING GUN? 95% of mercury stored in biomass volatilized 90% as elemental Hg 10% with aerosols Biomass burning may account for 25% of global emissions Large increase after wildfires?
CABALLO RESERVOIR: NM 2,930 ha burned in ’95 THg increased 650% MMHg up 3,000 % TOC up 600% Ratio of MMHg to THg up 1,000 % FIRES INCREASE DELIVERY OF Hg TO RESERVOIRS
Summary Mercury loadings are elevated in alpine lakes geographically distributed throughout Colorado Mercury loadings in all 5 lakes are more than 2x current global background Mercury loadings in lake sediments are comparable to impacted states such as Minnesota and Wisconsin
Summary 2 Mercury accumulation in Front Range lakes is increasing with time Mercury accumulation on Western Slope more difficult to evaluate
Summary 3 Snow melt runoff increases mercury and DOC transport to lakes Nitrogen fertilization from atmospheric deposition increases lake production of DOC DOC is coupled with mercury transport to lakes, mercury sequestration in lakes, and production of MMHg
Summary 4: FIRE Increases mercury availability Produces DOC Produces nutrients: N, P Changes hydrologic flowpaths to increase transport of DOC, N, P, and Hg to lakes Causes lake eutrophication, enhancing MMHg production and THg sequestration
Suggested Future Research Objectives 1)More extensive investigation of atmospheric Hg deposition in lake sediment cores and fish bioaccumulation; SW Colorado emphasis 2)Whole lake and basin Hg accumulation rates from multiple sediment cores (Engstrom et al., 1994), compare these values to wet-fall collectors for determination of dry deposition 3)Analysis of spheroidal fly ash particles in sediments to assess power plant input: role of power plants
More suggestions 4)Importance of TOC versus DOC for mercury transport 5)Hg and DOC during snowmelt 6)Hg measurements in burned basins 7)Amount of MMHg vs THg 8)Atmospheric sources of Hg