Pawe ł Gawrychowski* and Pat Nicholson** *University of Warsaw **Max-Planck-Institut für Informatik.

Slides:



Advertisements
Similar presentations
Succinct Data Structures for Permutations, Functions and Suffix Arrays
Advertisements

. STL: C++ Standard Library (continued). STL Iterators u Iterators are allow to traverse sequences u Methods  operator*  operator->  operator++, and.
Greedy Algorithms.
Program Slicing Mark Weiser and Precise Dynamic Slicing Algorithms Xiangyu Zhang, Rajiv Gupta & Youtao Zhang Presented by Harini Ramaprasad.
© 2004 Goodrich, Tamassia Tries1. © 2004 Goodrich, Tamassia Tries2 Preprocessing Strings Preprocessing the pattern speeds up pattern matching queries.
B+-tree and Hashing.
CS 280 Data Structures Professor John Peterson. Project Not a work day but I’ll answer questions as long as they keep coming! I’ll try to leave the last.
Lowest common ancestors. Write an Euler tour of the tree LCA(1,5) = 3 Shallowest node.
Finding Aggregates from Streaming Data in Single Pass Medha Atre Course Project for CS631 (Autumn 2002) under Prof. Krithi Ramamritham (IITB).
CSC 213 Lecture 18: Tries. Announcements Quiz results are getting better Still not very good, however Average score on last quiz was 5.5 Every student.
6/26/2015 7:13 PMTries1. 6/26/2015 7:13 PMTries2 Outline and Reading Standard tries (§9.2.1) Compressed tries (§9.2.2) Suffix tries (§9.2.3) Huffman encoding.
Improvements on the Range-Minimum-Query- Problem
Route Planning Vehicle navigation systems, Dijkstra’s algorithm, bidirectional search, transit-node routing.
Презентація за розділом “Гумористичні твори”
Центр атестації педагогічних працівників 2014
Галактики і квазари.
Характеристика ІНДІЇ.
Процюк Н.В. вчитель початкових класів Боярської ЗОШ І – ІІІ ст №4
1 CS143: Index. 2 Topics to Learn Important concepts –Dense index vs. sparse index –Primary index vs. secondary index (= clustering index vs. non-clustering.
Algorithm Engineering, September 2013Data Structures, February-March 2010Data Structures, February-March 2006 Cache-Oblivious and Cache-Aware Algorithms,
The Encoding Complexity of Two Dimensional Range Minimum Data Structures MADALGO, October 2, 2013 (Work presented at ESA 2013) 1234  n
The Encoding Complexity of Two Dimensional Range Minimum Data Structures European Symposium on Algorithms, Inria, Sophia Antipolis, France, September 3,
FUNCTIONS Lesson Two.
Indexing Debapriyo Majumdar Information Retrieval – Spring 2015 Indian Statistical Institute Kolkata.
On the Use of Regular Expressions for Searching Text Charles L.A. Clarke and Gordon V. Cormack Fast Text Searching.
Mike 66 Sept Succinct Data Structures: Techniques and Lower Bounds Ian Munro University of Waterloo Joint work with/ work of Arash Farzan, Alex Golynski,
Other formats for data Linked lists, Hash tables, JSON, Big Data, Hadoop & MapReduce. REST. Parallel processing exercise Homework: Plans for group sorting.
© 2004 Goodrich, Tamassia Tries1. © 2004 Goodrich, Tamassia Tries2 Preprocessing Strings Preprocessing the pattern speeds up pattern matching queries.
External Memory Algorithms for Geometric Problems Piotr Indyk (slides partially by Lars Arge and Jeff Vitter)
14/13/15 CMPS 3130/6130 Computational Geometry Spring 2015 Windowing Carola Wenk CMPS 3130/6130 Computational Geometry.
Type Less, Find More: Fast Autocompletion Search with a Succinct Index Holger Bast Max-Planck-Institut für Informatik Saarbrücken, Germany joint work with.
Introduction to Algorithms Jiafen Liu Sept
Read Alignment Algorithms. The Problem 2 Given a very long reference sequence of length n and given several short strings.
A fast algorithm for the generalized k- keyword proximity problem given keyword offsets Sung-Ryul Kim, Inbok Lee, Kunsoo Park Information Processing Letters,
Tries1. 2 Outline and Reading Standard tries (§9.2.1) Compressed tries (§9.2.2) Suffix tries (§9.2.3)
Духовні символи Голосіївського району
CSC321 Introduction to Neural Networks and Machine Learning Lecture 3: Learning in multi-layer networks Geoffrey Hinton.
Hank Childs, University of Oregon Isosurfacing (Part 3)
CSCI-256 Data Structures & Algorithm Analysis Lecture Note: Some slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved. 18.
CS 241 Discussion Section (12/1/2011). Tradeoffs When do you: – Expand Increase total memory usage – Split Make smaller chunks (avoid internal fragmentation)
ENCODING NEAREST LARGER VALUES Pat Nicholson* and Rajeev Raman** * MPII ** University of Leicester.
CMPT 238 Data Structures More on Sorting: Merge Sort and Quicksort.
On the R ange M aximum-Sum S egment Q uery Problem Kuan-Yu Chen and Kun-Mao Chao Department of Computer Science and Information Engineering, National Taiwan.
Tries 07/28/16 11:04 Text Compression
Tries 5/27/2018 3:08 AM Tries Tries.
Tries 9/14/ :13 AM Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and.
Data Structures: Segment Trees, Fenwick Trees
Reporting (1-D) Given a set of points S on the line, preprocess them to build structure that allows efficient queries of the from: Given an interval I=[x1,x2]
Preprocessing to accelerate 1-NN
ЗУТ ПРОЕКТ на Закон за изменение и допълнение на ЗУТ
О Б Щ И Н А С И Л И С Т Р А П р о е к т Б ю д ж е т г.
Боряна Георгиева – директор на
РАЙОНЕН СЪД - БУРГАС РАБОТНА СРЕЩА СЪС СЪДЕБНИТЕ ЗАСЕДАТЕЛИ ПРИ РАЙОНЕН СЪД – БУРГАС 21 ОКТОМВРИ 2016 г.
Сътрудничество между полицията и другите специалисти в България
Съобщение Ръководството на НУ “Христо Ботев“ – гр. Елин Пелин
ДОБРОВОЛЕН РЕЗЕРВ НА ВЪОРЪЖЕНИТЕ СИЛИ НА РЕПУБЛИКА БЪЛГАРИЯ
ПО ПЧЕЛАРСТВО ЗА ТРИГОДИШНИЯ
Васил Големански Ноември, 2006
Програма за развитие на селските райони
ОПЕРАТИВНА ПРОГРАМА “АДМИНИСТРАТИВЕН КАПАЦИТЕТ”
БАЛИСТИКА НА ТЯЛО ПРИ СВОБОДНО ПАДАНЕ В ЗЕМНАТА АТМОСФЕРА
МЕДИЦИНСКИ УНИВЕРСИТЕТ – ПЛЕВЕН
Стратегия за развитие на клъстера 2015
Моето наследствено призвание
Правна кантора “Джингов, Гугински, Кючуков & Величков”
Tries 2/23/2019 8:29 AM Tries 2/23/2019 8:29 AM Tries.
CMPS 3130/6130 Computational Geometry Spring 2017
Aggregate-Max Nearest Neighbor Searching in the Plane
NATURAL DISASTERS IN KY
Dependent Axis Y Answer Output Range f (x) Function Notation
Presentation transcript:

Pawe ł Gawrychowski* and Pat Nicholson** *University of Warsaw **Max-Planck-Institut für Informatik

Range Queries in Arrays

Encoding Range Queries in Arrays

Typical Data Structure Input Data (Relatively Big) Input Data (Relatively Big)

Typical Data Structure Input Data (Relatively Big) Input Data (Relatively Big) Data Structure Preprocess

Encoding Approach Input Data (Relatively Big) Input Data (Relatively Big)

Encoding Approach Input Data (Relatively Big) Input Data (Relatively Big) Preprocess w.r.t. Some Query Encoding (Hope: much smaller)

Encoding Approach Input Data (Relatively Big) Input Data (Relatively Big) Preprocess w.r.t. Some Query Encoding (Hope: much smaller)

Encoding Approach Input Data (Relatively Big) Input Data (Relatively Big) Preprocess w.r.t. Some Query Encoding (Hope: much smaller) Auxiliary Data Structures: (Should be smaller still)

Encoding Approach Succinct Data Structure: Minimum Space Possible Encoding (Hope: much smaller) Auxiliary Data Structures: (Should be smaller still) Input Data (Relatively Big) Input Data (Relatively Big) Preprocess w.r.t. Some Query

Encoding Approach Succinct Data Structure: Minimum Space Possible Encoding (Hope: much smaller) Auxiliary Data Structures: (Should be smaller still) Query (Hope: as fast as non- succinct counterpart) Input Data (Relatively Big) Input Data (Relatively Big) Preprocess w.r.t. Some Query

This Talk: Maximum-Sum Segments

Range Maximum-Sum Segment Queries

Now find the minimum in this range

Candidate Pairs

What Do They Store?

How to answer a query: the easy case

How to answer a query: the not so easy case

Reducing the Space

Nested Is Good ()((())(()(()))())((()(()))())

Recall The Query Algorithm

Problem: cannot store the left siblings explicitly

Idea: try to find something that is nested

What Do We Store?