Laboratory characterization and astronomical detection of the nitrosylium (nitrosyl) ion, NO + Stéphane Bailleux University.

Slides:



Advertisements
Similar presentations
School of Chemistry, University of Nottingham,UK 1 Why Does Star Formation Need Surface Science? Using Laboratory Surface Science to Understand the Astronomical.
Advertisements

Basics of mm interferometry Turku Summer School – June 2009 Sébastien Muller Nordic ARC Onsala Space Observatory, Sweden.
June 26, th International Symposium on Molecular Spectroscopy The Pure Rotational Spectrum of ZnS (X 1  + ) Lindsay N. Zack Lucy M. Ziurys Department.
Nuria Marcelino (NRAO-CV) Molecular Line Surveys of Dark Clouds Discovery of CH 3 O.
+ TERAHERTZ SPECROSCOPY OF METHYLAMINE R. A. Motiyenko, L. Margulès Laboratoire PhLAM, Université Lille 1, France V.V. Ilyushin, E.A. Alekseev Insitute.
Production of Molecular Ions Using a Hollow-Cathode Spectrometer Trevor Cross, Nadine Wehres, Mary Radhuber, Anne Carroll, Susanna Widicus Weaver Department.
Abundance and Distribution of the HNCS/HSCN isomer pair
SUBMILLIMETER-WAVE ROTATIONAL SPECTRA OF DNC T. Amano Department of Chemistry and Department of Physics and Astronomy The University of Waterloo.
Laboratory and Astronomical Detection of CCCN ¯ P. Thaddeus, C. A. Gottlieb, H. Gupta, S. Bruenken, M. C. McCarthy, M. Agundez, M. Guelin, and J.Cernicharo,
Millimeter Spectroscopy Joanna Brown. Why millimeter wavelengths? >1000 interstellar & circumstellar molecular lines Useful for objects at all different.
Complex organic molecules in hot corinos
Chemical and Physical Structures of Massive Star Forming Regions Hideko Nomura, Tom Millar (UMIST) ABSTRUCT We have made self-consistent models of the.
OBSERVATIONS OF INTERSTELLAR HYDROGEN FLUORIDE AND HYDROGEN CHLORIDE IN THE GALAXY Raquel R. Monje Darek C. Lis, Thomas Phillips, Paul F. Goldsmith Martin.
ISM Lecture 13 H 2 Regions II: Diffuse molecular clouds; C + => CO transition.
Spectral Line Survey with SKA Satoshi Yamamoto and Nami Sakai Department of Physics, The Univ. of Tokyo Tomoya Hirota National Astronomical Observatory.
The Interstellar Medium and Interstellar Molecules Ronald Maddalena National Radio Astronomy Observatory.
6 th IRAM 30m Summer School Star formation near and far A. Fuente Observatorio Astronómico Nacional (OAN, Spain) Photon Dominated Regions II. Chemistry.
A Search for Hydroxlyamine (NH 2 OH) Towards IRC+10216, Orion-S, Orion(KL), SgrB2(N), SgrB2(OH), W512M, W3(IRS5) R. L. Pulliam NRAO / North American ALMA.
DETECTION OF THE AMMONIUM ION IN SPACE SUPPORTED BY AN IMPROVED DETERMINATION OF THE 1 0 − 0 0 ROTATIONAL FREQUENCY FROM THE 4 BAND OF NH 3 D + J. L. DOMÉNECH,
June 18, nd Symp. on Molec. Spectrosc. The Pure Rotational Spectra of VN (X 3  r ) and VO (X 4  - ): A Study of the Hyperfine Interactions Michael.
Molecular Survival in Planetary Nebulae: Seeding the Chemistry of Diffuse Clouds? Jessica L. Dodd Lindsay Zack Nick Woolf Emily Tenenbaum Lucy M. Ziurys.
A Study of HCO + and CS in Planetary Nebulae Jessica L. Edwards Lucy M. Ziurys Nick J. Woolf The University of Arizona Departments of Chemistry and Astronomy.
A Confusion Limited Spectral Survey of Orion KL ( GHz) And a 2D Spectral Line Survey at 1mm José Cernicharo (CAB. INTA-CSIC) Nuria Marcelino (NRAO),
Sub-Doppler Spectroscopy of Molecular Ions in the Mid-IR James N. Hodges, Kyle N. Crabtree, & Benjamin J. McCall WI06 – June 20, 2012 University of Illinois.
Radio Astronomy Emission Mechanisms. NRAO/AUI/NSF3 Omega nebula.
ERIC HERBST DEPARTMENTS OF PHYSICS, CHEMISTRY AND ASTRONOMY THE OHIO STATE UNIVERSITY Interstellar Chemistry: Triumphs & Shortcomings.
ASTROCHEMISTRY IN THE SUBMM DOMAIN Bérengère Parise With kind inputs from my MPIfR colleagues: A. Belloche, S. Leurini, P. Schilke, S. Thorwirth, F. van.
Astrochemistry Les Houches Lectures September 2005 Lecture 1
June 16-20, rd International Symposium on Molecular Spectroscopy Direct Measurements of the Fundamental Rotational Transitions of CD and 13 CH.
Can You Breathe in Space? Searching for Molecular Oxygen in the Interstellar Medium Paul F. Goldsmith Senior Research Scientist Jet Propulsion Laboratory,
Atusko Maeda, Ivan Medvedev, Eric Herbst,
ISM & Astrochemistry Lecture 3. Models - History – Grain surface chemistry – H 2, CH, CH – Ion-neutral chemistry – HD, DCO
A NEW INTERSTELLAR MODEL FOR HIGH-TEMPERATURE TIME-DEPENDENT KINETICS Nanase Harada Eric Herbst The Ohio State University June 24, 2006 International Symposium.
Planetary Nebulae as a Testground of Interstellar Molecular Chemistry Tatsuhiko Hasegawa.
School of Physics and Astronomy FACULTY OF MATHEMATICS & PHYSICAL SCIENCES The IR-mm spectrum of a starburst galaxy Paola Caselli Astrochemistry of the.
June 21, th International Symposium on Molecular Spectroscopy Detection of FeCN (X 4  i ) in the Circumstellar Envelope of IRC Lindsay N.
63rd Symposium on Molecular Spectroscopy June 18, 2008 Submillimeter Spectroscopy of ZnO (X 1  + ) Lindsay N. Zack Robin L. Pulliam Lucy M. Ziurys Departments.
Interstellar Chemical Models with Molecular Anions Eric Herbst, OSU T. Millar, M. Cordiner, C. Walsh Queen’s Univ. Belfast R. Ni Chiumin, U. Manchester.
Astrochemistry University of Helsinki, December 2006 Lecture 3 T J Millar, School of Mathematics and Physics Queen’s University Belfast,Belfast BT7 1NN,
The Pure Rotational Spectrum of TiCl + (X 3  r ) by Velocity Modulation Spectroscopy DeWayne T. Halfen and Lucy M. Ziurys Department of Chemistry Department.
64th International Symposium on Molecular Spectroscopy June 22 – 26, 2009 Millimeter Detection of AlO (X 2 Σ + ): Metal Oxide Chemistry in the Envelope.
MW Spectroscopy of  -Alanine and a Search in Orion-KL Shiori Watanabe ( Kyoto Univ. JAPAN ), Satoshi Kubota, Kentarou Kawaguchi ( Okayama Univ. JAPAN.
Héctor G. Arce Yale University Image Credit: ESO/ALMA/H. Arce/ B. Reipurth Shocks and Molecules in Protostellar Outflows.
The ALMA view of a Carbon Rich AGB Star: The Spectrum of IRC+10216
Copyright All rights reserved. June 25, 2015ISMS, 2015
70 th International Symposium on Molecular Spectroscopy June 2015 First Scientific Observations with the New ALMA Prototype Antenna of the Arizona Radio.
1 The extended spectroscopic database on formamide: parent, 13 C and deuterated species up to 1 THz A.S. Kutsenko Institute of radio astronomy of NASU,
Electron-molecule collisions in harsh astronomical environments Alexandre Faure 1 & Jonathan Tennyson 2 1 Université de Grenoble / CNRS, France 2 University.
ASTROPHYSICAL MODELLING AND SIMULATION Eric Herbst Departments of Physics, Chemistry, and Astronomy The Ohio State University.
Astrochemistry Les Houches Lectures September 2005 Lecture 2 T J Millar School of Physics and Astronomy University of Manchester PO Box88, Manchester M60.
Chapter 14 The Interstellar Medium. All of the material other than stars, planets, and degenerate objects Composed of gas and dust ~1% of the mass of.
Exploring Molecular Complexity with ALMA (EMoCA): High-Angular-Resolution Observations of Sagittarius B2(N) at 3 mm Holger S. P. Müller A. Belloche (PI),
Time-resolved Fourier transform infrared emission spectra of HNC/HCN K. Kawaguchi & A. Fujimoto Okayama University.
Update of the analysis of the pure rotational spectrum of excited vibrational states of CH 3 CH 2 CN Adam Daly, John Pearson, Shanshan Yu, Brian Drouin.
THE J = 1 – 0 ROTATIONAL TRANSITIONS OF 12 CH +, 13 CH +, AND CD + T. Amano Department of Chemistry and Department of Physics and Astronomy The University.
June 18, nd Symp. on Molec. Spectrosc. Activation of C-H Bonds: Pure Rotational Spectroscopy of HZnCH 3 ( 1 A 1 ) M. A. Flory A. J. Apponi and.
June 19, 2012 (Toho Univ. a, Univ. Toyama b ) ○Yuta Motoki a, Yukari Tsunoda a, Hiroyuki Ozeki a, Kaori Kobayashi b Hiroyuki Ozeki a, Kaori Kobayashi b.
FAST SCAN SUBMILLIMETER SPECTROSCOPIC TECHNIQUE (FASSST). IVAN R. MEDVEDEV, BRENDA P. WINNEWISSER, MANFRED WINNEWISSER, FRANK C. DE LUCIA, DOUGLAS T. PETKIE,
Terahertz spectroscopy of deuterated methylene bi-radicals, CHD and CD 2 Stéphane Bailleux June 25, 2015 – 70 th ISMS.
An Experimental Approach to the Prediction of Complete Millimeter and Submillimeter Spectra at Astrophysical Temperatures Ivan Medvedev and Frank C. De.
Interstellar N 2 toward 20 Aql. Observations of the Interstellar Medium.
65th International Symposium on Molecular Spectroscopy June 21 – 25, 2010 Exotic Metal Molecules In Oxygen-Rich Envelopes: Detection of AlOH(X 1 Σ + )
Mid-IR Direct Absorption/Dispersion Spectroscopy of a Fast Ion Beam
INFRARED SPECTROSCOPY OF DISILICON-CARBIDE, Si2C
Chemistry in Interstellar Space
The Interstellar Detection of HSCN in Sgr B2(N)
Molecules: Probes of the Interstellar Medium
Takahiro Oyama, Rin Abe, Ayane Miyazaki,
LABORATORY AND ASTRONOMICAL DISCOVERY OF HYDROMAGNESIUM ISOCYANIDE
Fourier Transform Infrared Spectral
Presentation transcript:

Laboratory characterization and astronomical detection of the nitrosylium (nitrosyl) ion, NO + Stéphane Bailleux University of Lille June 18, 2014 – 69 th ISMS Meeting

Atmospheric NO + D- & E- regions of the ionosphere ( 60 – 130 km )  NO + and O 2 + : most abundant ions (Dalgarno & Fox, 1994)  photo–ionization (UV + X–rays) of N 2, NO, O 2  low exothermicity : major source and sink of other species (N, O, NO) Significant IR emitter in the thermosphere : N + + O 2 → NO + (v) + O O + + N 2 → NO + (v) + N EnviSat satellite / MIPAS spectrometer (40 – 170 km) 38 r o-vibrational lines (López-Puertas et al, 2006)

Astro-chemistry of NO + NO (X ² Π ) detected in :  Sgr B2 (Liszt & Turner, 1978)  L134N (McGonagle et al, 1990)  Orion–KL, W33A, W51M (Ziurys et al, 1991) NO + in space if T sources < 15 K  Herbst & Klemperer (1973), Alberti & Douglas (1975)  Pickles & Williams (1977), Singh & Maciel (1980) Many N–bearing species detected, e.g. HCN, HNC, NO, HNO, … NH 3, N 2 H +, NH 4 +, … CN (–), C 3 N (–), C 5 N (–), … NO/H 2 ~ 10 –8

Molecular properties First ionization energy of NO : eV Reactivity : X 1 Σ + (close-shell) isoelectronic with CO, N 2 I ( 14 N) = 1 ⇒ quadrupolar (hyperfine) structure  stable r e exp = Å ( r NO ≃ 1.15 Å) µ ≃ 0.36 D

Spectroscopy of NO + Electronic emission : A 1 Π – X 1 Σ + J = 1 – 0 : ~ ± 30 MHz (Alberti & Douglas, 1975) NO + in Ne matrix (Jacox & Thompson, 1990) fundamental vibrations (cm –1 ) : 14 N 16 O + : N 16 O + : N 18 O + : Hi–resolution spectroscopy  IR (diode laser) : 8 transitions  MMW : 2 lines (Bowman, Herbst & De Lucia, 1982) J = 2 – GHz + hyperfine structure ( 14 N) J = 3 – GHz

Extended negative glow discharge to pump N2N2 LN 2 solenoid pressure gauge NO or N 2 + O 2 anode 320 MHz  10 MHz PLL feedback   IF GHz local oscillator ~10 MHz Ref. oscillator 10 MHz Rb atomic clock Phase Sensitive Detector InSb Oscilloscope phase modulation BWO pre- amplifier LN 2 -cooled absorption cell ballast 5 kV /8 mA BWO power supply

Laboratory measurements vJ’ ( 14 NO + ) ( 15 NO + ) (15) (120) (40) (40) (50) (50) (60) (50) (80) (60) (75) (50) J = 1 ← 0 triplet not observed ( 14 NO + v = 0) MHz (F = 1 ← 1) MHz (F = 2 ← 1)F = J + I N MHz (F = 0 ← 1)

Bowman et al. (1982) cm –1 14 NO +

Constants (MHz) NO + 14 NO + 15 NO + our workBowman et alour work rotation B0B (6) (16) (8) D0D (6) (1) (7) B1B (9) (2) D1D (9) B2B (64) D2D (13) quadrupole eQq (40) (10)

IRAM 30 m telescope (Pico Veleta, Spain) Line surveys  3, 2 & 1 mm 198 kHz resolution  3 mm 50 kHz resolution

Target : cold, dark core B–1b (1200 M ☉ ) 1 st detected in B1–b : HCNO, CH 3 O, NH 4 +, NH 3 D + D–fractionation : NH 3 D +, ND 3, D 2 CS, … rich chemistry in B1–bB1–b : helps understanding star formation 2 very dense cores N(H 2 ) = cm –2 n(H 2 ) = 10 5 cm –3 T = 12 –15 K Molecular clouds in Perseus © Adam Block

2 velocity components 6.5 km s –1 : cm – ² 7.5 km s –1 : cm – ² 6 hyperfine components (6.5 km s –1 ) NO + J = 2 – V LSR (km s –1 ) Predicted line profile from a model with 2 velocity components O NLY NO + MATCHES THIS LINE IN THE M ADEX C ODE (4900 SPECIES )

NO + J = 2 – GHz HCNO J = 4 – 3 HSCN J = ³/₂ – ¹/₂ F = ⁵/₂ – ³/₂ NO MHz J K a K c = 1 01 – 0 00 HNO new species NOHNO X NO / X NO + ≃ 510 X NO / X HNO ≃ 550 X NO + / X HNO ≃ MHz MHz

Time–dependent gas–phase model 1117 species 1117 reactions Pathways in cold, dense clouds charge transfert : H + + NO → NO + + H ion – molecule : N + + CO → NO + + C proton elimination : H + + HNO → NO + + H 2 dissociative recombination : NO + + e → N + O

model : typical dark cloud n(H 2 ) ≃ 10 5 cm –3 T ≃ 10 K X NO + pred ≃ X NO + obs X NO pred ≃ 4  X NO obs X HNO pred ≃ 150  X HNO obs Abundance relative to H 2 Time (yrs) Predicted abundances

only 1 line detected no satisfactory chemical formation path matches the low observed HNO abundance better models needed (reactions at the surfaces of grains, …) Interstellar species containing N and O poorly studied Concluding remarks

Co–authors E. Alekseev (Inst. Radio–Astronomy, Karkhov) J. Cernicharo & B. Tercero (Dep. Astrophysics, Madrid) A. Fuente & R. Bachiller (Obs. Astronomy, Spain) E. Roueff & M. Gerin (Obs. Paris–Meudon) S. P. Treviño–Morales (IRAM, Spain) N. Marcelino (NRAO) B. Lefloch (Inst. Planetologie & Astrophysique, Grenoble, Fr)

Y 10 (  e ) (3)cm –1 Y (1)cm –1 U 01 / µ µµ (5)MHz Y 01 (B e ) (5)MHz  01 N (2) Y 11 ( -  e ) (2)MHz Y (  e ) (5)MHz Y 02 ( - D e ) (9)kHz Y 12 2 (  e ) (10)kHz Dunham analysis ( 14 N 16 O + ) E v,J / ℎ = ∑ Y lm (v + ½ ) l J m (J+1) m Y 01 = U 01 / µ (1 + m e  01 N /M N ) U 01 (r e BO ) ² = (36)   r e BO = (5) Å

Complete spectrum (1.7 GHz)