1 Sebastián Franco SLAC Theory Group IPPP Durham University.

Slides:



Advertisements
Similar presentations
Brane Tilings and New Horizons Beyond Them
Advertisements

On d=3 Yang-Mills-Chern- Simons theories with “fractional branes” and their gravity duals Ofer Aharony Weizmann Institute of Science 14 th Itzykson Meeting.
Calabi-Yau compactifications: results, relations & problems
Brane Tilings and New Horizons Beyond Them Calabi-Yau Manifolds, Quivers and Graphs Sebastián Franco Durham University Lecture 2.
Brane-World Inflation
Summing planar diagrams
Construction of BPS Solitons via Tachyon Condensation So RIKEN based on the work with T. Asakawa and K. Ohta hep-th/0603***
Non-perturbative effects in string theory compactifications Sergey Alexandrov Laboratoire Charles Coulomb Université Montpellier 2 in collaboration with.
AdS4/CFT3 correspondence and Chern-Simons gauge theories Jaemo Park (Postech ) Yong Pyong TexPoint fonts used in EMF. Read the TexPoint manual.
The Topological G 2 String Asad Naqvi (University of Amsterdam) (in progress) with Jan de Boer and Assaf Shomer hep-th/0506nnn.
Geometric Transitions 25 Giugno 2007 Michele Rossi.
INSTANTON PARTITION FUNCTIONS Nikita Nekrasov IHES (Bures-sur-Yvette) & ITEP (Moscow)QUARKS-2008 May 25, 2008 Nikita Nekrasov IHES (Bures-sur-Yvette) &
Singularities in String Theory Hong Liu Massachusetts Institute of Technology ICHEP 04 Beijing.
A 5d/2d/4d correspondence Babak Haghighat, Jan Manschot, S.V., to appear; B. Haghighat and S.V., arXiv:
新しいラージN極限と インスタントン 柴 正太郎 益川塾
The Giant Magnon and Spike Solution Chanyong Park (CQUeST) Haengdang Workshop ’07, The Giant Magnon and Spike Solution Chanyong Park.
Semi-Classical strings as probes of AdS/CFT M. Kruczenski Purdue University Based on: arXiv: R. Roiban, A. Tirziu, A. Tseytlin, M.K. arXiv:
Random Matrix Theory Workshop NBIA May 2007 Large N double scaling limits in Gauge Theories and Matrix Models Gaetano Bertoldi Swansea University.
Gauge/gravity duality and meta-stable SUSY breaking Sebastián Franco Princeton University Based on:hep-th/ : Argurio, Bertolini, Franco and Kachru.
Matrix Models, The Gelfand-Dikii Differential Polynomials, And (Super) String Theory The Unity of Mathematics In honor of the ninetieth birthday of I.M.
The superconformal index for N=6 Chern-Simons theory Seok Kim (Imperial College London) talk based on: arXiv: closely related works: J. Bhattacharya.
Topological String Theory and Black Holes Eurostrings 2006, Cambridge, UK - review - w/ C. Vafa, E.Verlinde, hep-th/ work in progress Robbert.
Spin Chain in Gauge Theory and Holography Yong-Shi Wu Department of Physics, University of Utah, Center for Advanced Study, Tsinghua University, and Shanghai.
Supersymmetry and Gauge Symmetry Breaking from Intersecting Branes A. Giveon, D.K. hep-th/
Spiky strings, light-like Wilson loops and a pp-wave anomaly M. Kruczenski Purdue University Based on: arXiv: arXiv: A. Tseytlin, M.K.
Large spin operators in string/gauge theory duality M. Kruczenski Purdue University Based on: arXiv: (L. Freyhult, A. Tirziu, M.K.) Miami 2009.
Matrix factorisations and D-branes Matthias Gaberdiel ETH Zürich Cambridge, 3 April 2006.
Developments in BPS Wall-Crossing Work done with Davide Gaiotto and Andy Neitzke arXiv: TexPoint fonts used in EMF: AA A A A A A AA A A A A Strings.
Spiky Strings in the SL(2) Bethe Ansatz
Spin chains and strings in Y p,q and L p,q|r manifolds Martin Kruczenski Princeton University Based on hep-th/ and hep-th/ w/ S. Benvenuti.
Planar diagrams in light-cone gauge hep-th/ M. Kruczenski Purdue University Based on:
Strings in AdS pp-waves M. Kruczenski Purdue University Based on: arXiv: A. Tseytlin, M.K. arXiv: R. Ishizeki, A. Tirziu, M.K. + work.
String Theory Books MBG 60 April 7, Chronology JHS: , Princeton U. MBG: , IAS 1972: JHS to Caltech, MBG to England 1979: Begin collaboration.
Different faces of integrability in the gauge theories or in hunting for the symmetries Isaac Newton Institute, October 8.
AGT 関係式 (1) Gaiotto の議論 (String Advanced Lectures No.18) 高エネルギー加速器研究機構 (KEK) 素粒子原子核研究所 (IPNS) 柴 正太郎 2010 年 6 月 2 日(水) 12:30-14:30.
SUSY Breaking in D-brane Models Beyond Orbifold Singularities Sebastián Franco Durham University José F. Morales INFN - Tor Vergata.
Curvature operator and gravity coupled to a scalar field: the physical Hamiltonian operator (On going work) E. Alesci, M. Assanioussi, Jerzy Lewandowski.
Exact Results for perturbative partition functions of theories with SU(2|4) symmetry Shinji Shimasaki (Kyoto University) JHEP1302, 148 (2013) (arXiv: [hep-th])
String solitons in the M5-brane worldvolume with a Nambu-Poisson structure and Seiberg-Witten map Tomohisa Takimi (NTU) Ref ) Kazuyuki Furuuchi, T.T JHEP08(2009)050.
AGT 関係式 (4) AdS/CFT 対応 (String Advanced Lectures No.21) 高エネルギー加速器研究機構 (KEK) 素粒子原子核研究所 (IPNS) 柴 正太郎 2010 年 6 月 30 日(水) 12:30-14:30.
Supersymmetric Quantum Field and String Theories and Integrable Lattice Models Nikita Nekrasov Integrability in Gauge and String Theory Workshop Utrecht.
AGT 関係式 (3) 一般化に向け て (String Advanced Lectures No.20) 高エネルギー加速器研究機構 (KEK) 素粒子原子核研究所 (IPNS) 柴 正太郎 2010 年 6 月 23 日(水) 12:30-14:30.
AGT 関係式とその一般化に向け て (Towards the generalization of AGT relation) 高エネルギー加速器研究機構 (KEK) 素粒子原子核研究所 (IPNS) 柴 正太郎 (Shotaro Shiba) S. Kanno, Y. Matsuo, S.S. and.
Finite N Index and Angular Momentum Bound from Gravity “KEK Theory Workshop 2007” Yu Nakayama, 13 th. Mar (University of Tokyo) Based on hep-th/
LLM geometries in M-theory and probe branes inside them Jun-Bao Wu IHEP, CAS Nov. 24, 2010, KITPC.
Matrix Models and Matrix Integrals A.Mironov Lebedev Physical Institute and ITEP.
Braids, Walls and Mirrors Based on joint work with Sergio Cecotti and Clay Cordova TexPoint fonts used in EMF. Read the TexPoint manual before you delete.
Z THEORY Nikita Nekrasov IHES/ITEP Nagoya, 9 December 2004.
AGT 関係式 (2) AGT 関係式 (String Advanced Lectures No.19) 高エネルギー加速器研究機構 (KEK) 素粒子原子核研究所 (IPNS) 柴 正太郎 2010 年 6 月 9 日(水) 12:30-14:30.
Gauge Theory and Topological Strings Geometry Conference in honour of Nigel Hitchin - RHD, C. Vafa, E.Verlinde, hep-th/ J. de Boer, M. Chang,
Progress in D=4, N=2 Field Theory Gregory Moore, Rutgers University Strings-Math, Bonn, July, 2012 P. Aspinwall,W.-y. Chuang,E.Diaconescu,J. Manschot,
Minkyoo Kim (Wigner Research Centre for Physics) 9th, September, 2013 Seminar in KIAS.
Introduction to Strings Yoshihisa Kitazawa KEK Nasu lecture 9/25/06.
Spectral Networks and Their Applications Gregory Moore, Rutgers University Caltech, March, 2012 Davide Gaiotto, G.M., Andy Neitzke Spectral Networks and.
Heterotic—F Theory Duality Revisited
Laboratoire Charles Coulomb
2 Time Physics and Field theory
2011 年 4 月 27 日 1 吉田豊 Y. Yoshida arXiv: [hep-th]
P-Term Cosmology A.C. Davis (with C. Burrage) ,
Brief review of basic string theory Bosonic string Superstring three different formulations of superstring (depending on how to deal with the fermionic.
ArXiv: (hep-th) Toshiaki Fujimori (Tokyo Institute of Technology) Minoru Eto, Sven Bjarke Gudnason, Kenichi Konishi, Muneto Nitta, Keisuke Ohashi.
CERNTR, 16 February 2012 Non-perturbative Physics from String Theory Dr. Can Kozçaz, CERN.
ADHM is a Tachyon Condensation --- Stringy Derivation of the ADHM Construction --- Koji Hashimoto (U. of Tokyo, Komaba) 30 Oct Hawaii meeting hep-th/ ,
STRING THEORY AND M-THEORY: A Modern Introduction
Holography and Topological Strings
Dimer models and orientifolds
Hyun Seok Yang Center for Quantum Spacetime Sogang University
Exceptional gauge groups in F-theory models without section
Deformed Prepotential, Quantum Integrable System and Liouville Field Theory Kazunobu Maruyoshi  Yukawa Institute.
AGT 関係式(1) Gaiotto の議論 (String Advanced Lectures No.18)
Presentation transcript:

1 Sebastián Franco SLAC Theory Group IPPP Durham University

2  Gauge group:  SU(N)  F-terms:  monomial = monomial  On the worldvolume of D3-branes, N =1 superconformal field theory with: Every field appears exactly twice in W with opposite signs (Toric Condition) CY3 N D3-branes  Torus fibrations over base spaces  Described by specifying shrinking cycles and their relations Toric Geometry 2-sphere compact 4-cycle  Encoded by web or toric diagrams Toric Diagram

3 The dimer model is a physical configuration of NS5 and D5-branes  All the information defining the gauge theory can be encoded in a dimer model on T  Example:  Example: complex cone over F 0 Gauge TheoryDimer SU(N) gauge groupface bifundamental (or adjoint) edge superpotential termnode Franco, Hanany, Kennaway, Vegh, Wecht

4  Perfect matching:  Perfect matching: configurations of edges such that every vertex in the graph is an endpoint of precisely one edge  Moduli Space:  Moduli Space: perfect matchings are the natural variables solving F-term equations Franco, Vegh Franco, Hanany, Kennaway, Vegh, Wecht p1p1 p2p2 p3p3 p4p4 p5p5 p6p6 p7p7 p9p9 p8p8 (n1,n2) crossings of (z1,z2) directions

5  This correspondence trivialized formerly complicated problems such as the computation of the moduli space of the SCFT, which reduces to calculating the determinant of an adjacency matrix of the dimer model (Kasteleyn matrix)  There is a one to one correspondence between perfect matchings and GLSM fields describing the toric singularity (points in the toric diagram) Franco, Vegh Franco, Hanany, Kennaway, Vegh, Wecht p 1, p 2, p 3, p 4, p 5 p8p8 p6p6 p9p9 p7p7 K = white nodes black nodes Kasteleyn Matrix Toric Diagram det K = P(z 1,z 2 ) =  n ij z 1 i z 2 j Example: F 0

6  Local constructions of MSSM + CKM  Dynamical SUSY breaking  AdS/CFT correspondence in 3+1 and 2+1 dimensions BPS invariants of CYs (e.g. DT)  Mirror symmetry  Toric/Seiberg duality  D-brane instantons   Define an infinite class of interesting objects: largest classification of 4d, N=1 SCFTs  Make previous complicated calculations trivial: determination of their moduli space  The power of dimer models: Can they do it again? YES!  Define an infinite class of quantum integrable systems  Constructing all integrals of motion becomes straightforward Eager, SF SF, Hanany, Kennaway, Vegh, Wecht SF, Hanany, Krefl, Park, Uranga SF, Uranga SF, Hanany, Martelli, Sparks, Vegh, Wecht SF, Hanany, Park, Rodriguez-Gomez SF, Klebanov, Rodriguez-Gomez

7

 One w i variable per gauge group:  Two 2-torus directions: w1w1 z1z1 Example: F 0  {w i,w j } = I ij w i w j I ij : intersection matrix  Idem for {w i,z j } and {z 1,z 2 } e.g: {w 1,w 3 } = 4 w 1 w 3 {w 1,w 2 } = -2 w 1 w z2z2  exponential in p and q

 Every perfect matching defines a closed path on the tiling by taking the difference with respect to a reference perfect matching == w 1 w 4 The commutators define a 0+1d quantum integrable system of dimension Area (toric diagram), with symplectic leaves of dimension 2 N interior  Casimirs: ratios of boundary points (commute with everything)  Hamiltonians: internal points (commute with each other)  Every perfect matching can be expressed in term of loops variables Goncharov, Kenyon Eager, Franco, Schaeffer

10  This theory  This theory has 9 perfect matchings w 1 + w 1 w 4 + w 1 w 2 + w 3 -1 z2z2 z 1 -1 w 1 -1 w 2 -1 z 2 -1 w 1 w 4 z 1  Casimirs:  Hamiltonian: C 1 = z 1 z 2 C 2 = w 1 w 2 z 2 / z 1 C 3 = 1/(w 1 2 w 2 2 z 1 z 2 ) H = 1 + w 1 + w 1 w 4 + w 1 w 2 + w 3 -1

 Fully constructive prescription for building an integrable system given a spectral curve e.g.: relativistic periodic Toda chain (Conifold/Z n ) quiver/dimer model mirror manifold Feng, He, Kennaway, Vafa Hamiltonians Casimirs  Characteristic polynomial: P(z 1,z 2 ) coeficients and their ratios give Hamiltonians and Casimirs Spectral curve  P(z 1,z 2 ) = 0 Mirror manifold P(z 1, z 2 ) = Wu v = W Eager, Franco, Schaeffer Franco Brane configuration for: 5d, N=1, pure SU(n) gauge theory on S 1

12  Multiple avatars of the Riemann surface   Among other things, we systematically address the question: what is the integrable system associated to an arbitrary 4d N=2 gauge theory? (spectral curve as SW curve) 5d N=1 gauge theory on S 1  M5-brane wrapped on   M-theory on CY3 Relativistic Integrable System  Spectral curve  Dimer Model   inside mirror 4d N=2 gauge theory  Seiberg-Witten curve  Non-Relativistic Integrable System  Spectral curve  R → 0p i → 0 Eager, Franco, Schaeffer

13  Spectral curve  1 2 3p-1p p+1 p+2 p+32p-12p p/2 + 1 Nekrasov  It corresponds to Y p,0 (Z p orbifold of the conifold)  Dimer model: reference p.m. 5d, N=1, pure SU(p) gauge theory on S 1

14  Basic cyles: w i (i = 1, …, 2p), z 1 and z 2 didi i=1,…,p cici even i C i-1 even i  Two additional cycles fixed by Casimirs {c k,d k } = c k d k {c k,d k-1 } = c k d k-1 {c k,c k+1 } = - c k c k+1 H k =   c i d j  Hamiltonians in terms of non-intersecting paths: k factors  A more convenient basis: H 1 =   c i + d i ) Eager, Franco, Schaeffer Bruschi, Ragnisco

15  The Kasteleyn matrix is the adjacency matrix of the dimer  This is precisely the Lax operator of the non-relativistic periodic Toda chain! p1p1 e q 1 -q 2 e q p -q 1 w e q 1 -q 2 p2p2 e q 2 -q 3 e q p- 1 -q p e q p -q 1 w -1 e q 2 -q 3p L(w) = -H 1 -H 1 z 1 V1V1 V p z 2 V1V1 H 2 +H 2 z 1 -1 V2V2 V2V2 V p-1 V p z 2 -1 V p-1 H p +H p z 1 -1 K = ~ ~ ~ ~ ~ ~ ~ P(z 1,z 2 ) = det K  Non-relativistic limit: linear orden in p i and z and defineL(w) - z ≡ K V i = V i ≡ e q i -q i+1 H i = -H i ≡ e (-1) p i /2 z 1 ≡ e -z z 2 ≡ w ~~  Rows:  Columns: It controls conserved quantities

16  Relativistic, periodic Toda chain  5d, N=1, pure SU(p) on S 1  Quantized cubic coupling in prepotential: c cl = 0, …, p (disappears in 4d limit)  These are the toric diagrams for Y p,q manifolds  Y p,p : C 3 /(Z 2 ×Z p )  Y p,0 : conifold/Z p  Quivers constructed iteratively starting for Y p,p and adding (p-q) impurities   The quiver impurities are indeed impurities in XXZ spin chains  c cl = q Benvenuti, Franco, Hanany, Martelli, Sparks (0,1) (0,0) (0,p) (-1,p-q) Y 4,0 Y 4,1 Y 4,2 Y 4,3 Y 4,4 Eager, Franco, Schaeffer

17  In addition, they define an infinite class of quantum integrable systems  The computation of all integrals of motion becomes straightforward  These integrable systems are also associated to 5d N=1 and 4d N=2 gauge theories  Dimer models provide a systematic procedure for constructing the integrable system for an arbitrary gauge theory of this type  Dimer models are brane configurations in String Theory connecting Calabi-Yau’s and quantum field theories in various dimensions  Quantum Teichmüller Space: one-to-one correspondence between edges in dimer models and Fock coordinates in the Teichmüller space of . The commutation relations required by integrability imply Chekhov-Fock quantization. Franco

 Study the continuous (1+1)-dimensional integrable field theory limit  Classification of possible integrable impurities and interfaces in integrable field theories Franco, Galloni, He, and in progress 18  Applications to 3d-3d generalizations of the Alday-Gaiotto-Tachikawa (AGT) correspondence M 3 =  × I Z 3d SL(2,R) CS = Z 3d N=2 theory Terashima, Yamazaki  Connection to quivers encoding the BPS spectrum of N=2 gauge theories, obtained from ideal triangulations of the SW curve. Alim, Cecotti, Cordova, Espahbodi, Rastogi, Vafa Also Gaiotto, Moore, Neitzke

19

20 Integrabe Systems 5d, N=2 Gauge Theory 4d, N=1 Gauge Theory 4d, N=1, SCFT quivers N=2 BPS states 3d-3d AGT Calabi- Yaus  Dimer models provide natural, systematic bridges connecting integrable systems to several physical systems.