The VLA-COSMOS survey: Tracing star-forming and AGN galaxies through cosmic time Vernesa Smolčić (Caltech) E. Schinnerer (MPIA), C.L. Carilli (NRAO), M.

Slides:



Advertisements
Similar presentations
Elodie GIOVANNOLI Laboratoire d’Astrophysique de Marseille, FRANCE Advisor : Veronique BUAT Collaborators : Denis Burgarella, Stefan Noll Spectral energy.
Advertisements

18 July Monte Carlo Markov Chain Parameter Estimation in Semi-Analytic Models Bruno Henriques Peter Thomas Sussex Survey Science Centre.
Luminous Infrared Galaxies with the Submillimeter Array: Probing the Extremes of Star Formation Chris Wilson (McMaster), Glen Petitpas, Alison Peck, Melanie.
The W i d e s p r e a d Influence of Supermassive Black Holes Christopher Onken Herzberg Institute of Astrophysics Christopher Onken Herzberg Institute.
Molecular gas in the z~6 quasar host galaxies Ran Wang National Radio Astronomy Observatory Steward Observatory, University of Atrizona Collaborators:
Ray Norris, Jamie Stevens, et al. Deep CABB observations of ECDFS ( Extended Chandra Deep Field South )
Star Formation in AGN hosts Li Shao & PACS Evolutionary Probe (PEP) group Hangzhou, China April 28, 2011 Evidence from Herschel PACS.
The AGN-Starburst Connection in Submillimeter Galaxies Josh Younger Institute for Advanced Study.
Science with FMOS The UDS perspective Omar Almaini (Nottingham) Update on UKIDSS UDS The UDS redshift survey (UDSz) Opportunities with FMOS.
Kevin Bundy, Caltech The Mass Assembly History of Field Galaxies: Detection of an Evolving Mass Limit for Star-Forming Galaxies Kevin Bundy R. S. Ellis,
Star formation and submm/far- IR luminous galaxies Andrew Blain Caltech 26 th May 2005 Kyoto COSMOS meeting.
The SIRTF SWIRE Survey SWIRE is a shallow/moderate depth survey of ~70 sq. degrees in all 7 SIRTF imaging bands 5  sensitivities: 17.5 mJy 160  m 2.75.
A Bolometric Approach To Galaxy And AGN Evolution. L. L. Cowie Venice 2006 (primarily from Wang, Cowie and Barger 2006, Cowie and Barger 2006 and Wang.
 Extragalactic radio surveys at 1.4 GHz  An overview of the survey (hereafter UDS20) and some results  The nature of the radio population.
The Regulation of Star Formation by AGN Feedback D AVID R AFFERTY (Penn State / Ohio U.) Collaborators: Brian McNamara (Waterloo) and Paul Nulsen (CfA)
Eight billion years of galaxy evolution Eric Bell Borch, Zheng, Wolf, Papovich, Le Floc’h, & COMBO-17, MIPS, and GEMS teams Venice
Problem of weak radio emission FR II or FR I ?. Hans-Rainer Klöckner Alejo Martínez-Sansigre Mike Garrett Steve Rawlings Paul Alexander David Green Julia.
Star formation at high redshift (2 < z < 7) Methods for deriving star formation rates UV continuum = ionizing photons (dust obscuration?) Ly  = ionizing.
The VLA 1.4 GHz Survey of the COSMOS Field (Outlook) Eva Schinnerer (MPIA) Chris Carilli (NRAO),Nick Scoville (Caltech) VLA-COSMOS team, COSMOS collaboration.
AGN and Quasar Clustering at z= : Results from the DEEP2 + AEGIS Surveys Alison Coil Hubble Fellow University of Arizona Chandra Science Workshop.
SFR and COSMOS Bahram Mobasher + the COSMOS Team.
Space Density of Heavily-Obscured AGN, Star Formation and Mergers Ezequiel Treister (IfA, Hawaii Ezequiel Treister (IfA, Hawaii) Meg Urry, Priya Natarajan,
Magic of (sub)mm L _FIR = 1.5e12 L _sun 3mJy  Distance independent probe of universe  Biased to > ULIRGs.
Clustering of QSOs and X-ray AGN at z=1 Alison Coil Hubble Fellow University of Arizona October 2007 Collaborators: Jeff Newman, Joe Hennawi, Marc Davis,
Jerusalem 2004 Hans-Walter Rix - MPIA The Evolution of the High-z Galaxy Populations.
Astrophysics from Space Lecture 8: Dusty starburst galaxies Prof. Dr. M. Baes (UGent) Prof. Dr. C. Waelkens (KUL) Academic year
Luminosity and Mass functions in spectroscopically-selected groups at z~0.5 George Hau, Durham University Dave Wilman (MPE) Mike Balogh (Waterloo) Richard.
Obscured AGN in the (z)COSMOS survey AGN9, Ferrara, May Angela Bongiorno Max-Planck-Institut für extraterrestrische Physik, Garching, GERMANY AND.
The Evolution of Quasars and Massive Black Holes “Quasar Hosts and the Black Hole-Spheroid Connection”: Dunlop 2004 “The Evolution of Quasars”: Osmer 2004.
Black Hole Growth and Galaxy Evolution Meg Urry Yale University.
Past, Present and Future Star Formation in High Redshift Radio Galaxies Nick Seymour (MSSL/UCL) 22 nd Nov Powerful Radio Galaxies.
Deep Surveys with the VLA: The CDFS and UDF K.I. Kellermann, E.B. Fomalont (NRAO), E. Richards, J. Kelly (NRAO & UVa), Neal Miller, NRAO and Johns Hopkins.
Jeyhan S. Kartaltepe Hubble Fellow - NOAO Hubble Fellows Symposium 2012 March 7.
RADIO OBSERVATIONS IN VVDS FIELD : PAST - PRESENT - FUTURE P.Ciliegi(OABo), Marco Bondi (IRA) G. Zamorani(OABo), S. Bardelli (OABo) + VVDS-VLA collaboration.
Conference “Summary” Alice Shapley (Princeton). Overview Multitude of new observational, multi-wavelength results on massive galaxies from z~0 to z>5:
ASTRONOMY BROWN BAG SEMINAR SWIRE Spitzer Wide – area Infra Red Extragalactic survey MARCH 17, 2009 DAVID CORLISS.
Q COSMOS Team Meeting ‘10 | June 10, 2010 Properties The ISM Properties of distant star-forming galaxies as constrained by the parameter (in its various.
The Extremely Red Objects in the CLASH Fields The Extremely Red Galaxies in CLASH Fields Xinwen Shu (CEA, Saclay and USTC) CLASH 2013 Team meeting – September.
THE HST VIEW OF LINERS AND OTHER LOCAL AGN MARCO CHIABERGE CNR - Istituto di Radioastronomia - Bologna Alessandro Capetti (INAF-OATo) Duccio Macchetto.
Vandana Desai Spitzer Science Center with Lee Armus, Colin Borys, Mark Brodwin, Michael Brown, Shane Bussmann, Arjun Dey, Buell Jannuzzi, Emeric Le Floc’h,
The Accretion History of SMBHs in Massive Galaxies Kate Brand STScI Collaborators: M. Brown, A. Dey, B. Jannuzi, and the XBootes and Bootes MIPS teams.
FRI RADIO GALAXIES AT z > 1 STUDYING THE BUILDING BLOCKS OF TODAY'S MOST MASSIVE GALAXIES AND CLUSTERS Marco Chiaberge Space Telescope Science Institute.
Galaxy and Quasar Clustering at z=1 Alison Coil University of Arizona April 2007.
Delphine Marcillac Moriond 2005 When UV meets IR... 1 IR properties of distant IR galaxies Delphine Marcillac (PhD student) Supervisor : D. Elbaz In collaboration.
The Environment of MAMBO Galaxies in the COSMOS field Manuel Aravena F. Bertoldi, C. Carilli, E. Schinnerer, H. J. McCracken, K. M. Menten, M. Salvato.
Radio Emission in Galaxies Jim Condon NRAO, Charlottesville.
December 17, 2008 The EVLA Vision Galaxies Through CosmicTime 1 Microjansky Radio Sources: AGN or Star Formation? Ken Kellermann & EdFomalont NRAO in collaboration.
Exploringthe μJy and nJy Sky with the EVLA and the SKA Ken Kellermann NRAO East Asia SKA Workshop December 3, /2/20111KASI, Daejeon, Korea.
USING LOW POWER RADIO GALAXIES AS BEACONS FOR CLUSTERS AT 1
Cosmos Survey PI Scoville HST 590 orbits I-band 2 deg. 2 !
Black hole accretion history of active galactic nuclei 曹新伍 中国科学院上海天文台.
A multi-band view on the evolution of starburst merging galaxies A multi-band view on the evolution of starburst merging galaxies Yiping Wang (王益萍) Purple.
A Steep Faint-End Slope of the UV LF at z~2-3: Implications for the Missing Stellar Problem C. Steidel ( Caltech ) Naveen Reddy (Hubble Fellow, NOAO) Galaxies.
Peter-Christian Zinn | AGN feedback works both ways | The Modern Radio Universe | 22 APR 2013 AGN feedback works both ways Positive AGN feedback through.
Obscured Star Formation in Small Galaxies out to z
KASI Galaxy Evolution Journal Club A Massive Protocluster of Galaxies at a Redshift of z ~ P. L. Capak et al. 2011, Nature, in press (arXive: )
The luminosity-dependent evolution of the radio luminosity function Emma Rigby University of Nottingham Collaborators: P. Best, M. Brookes, J. Dunlop,
National Radio Astronomy Observatory EVLA Workshop Deeper Knowledge Through Confusion Jim Condon.
What is EVLA? Giant steps to the SKA-high ParameterVLAEVLAFactor Point Source Sensitivity (1- , 12 hr.)10  Jy1  Jy 10 Maximum BW in each polarization0.1.
Tools for computing the AGN feedback: radio-loudness and the kinetic luminosity function Gabriele Melini Fabio La Franca Fabrizio Fiore Active Galactic.
J. L. Higdon, S. J. U. Higdon, D. Weedman, J. Houck (Cornell) B. T. Soifer (Caltech), B. Jannuzi, A. Dey, M. Brown (NOAO) E. Le Floc’h, & M. Rieke (Arizona)
High Redshift Galaxies/Galaxy Surveys ALMA Community Day April 18, 2011 Neal A. Miller University of Maryland.
9 Gyr of massive galaxy evolution Bell (MPIA), Wolf (Oxford), Papovich (Arizona), McIntosh (UMass), and the COMBO-17, GEMS and MIPS teams Baltimore 27.
AEGIS-X: Results from the Chandra survey of the Extended Groth Strip
Probing the Faint Radio Population
1.4 GHz Source Counts (Hopkins 2000)
The Starburst-AGN Connection Among COSMOS (U)LIRGs
Black Holes in the Deepest Extragalactic X-ray Surveys
Shaji Vattakunnel - University of Trieste
Borislav Nedelchev et al. 2019
Presentation transcript:

The VLA-COSMOS survey: Tracing star-forming and AGN galaxies through cosmic time Vernesa Smolčić (Caltech) E. Schinnerer (MPIA), C.L. Carilli (NRAO), M. Bondi (INAF), P. Cilliegi (INAF), G. Zamorani (INAF), K. Jahnke (MPIA), M. Sargent (MPIA) & the (VLA-)COSMOS collaboration

Radio emission at 1.4 GHz (20cm) Dominated by synchrotron radiation Dominated by synchrotron radiation Two dominant populations in extragalactic radio surveys: Two dominant populations in extragalactic radio surveys: 1 Star forming (SF) galaxies Radio emission is not sensitive to dust 2 Active galactic nuclei (AGN) Radio emission directly traces the population of low radio power AGN, deemed important for galaxy formation Condon 1992

1.4 GHz 20 cm1.4 GHz 20 cm 1.4 GHz z ~ 51.4 GHz z ~ 5 M82 Thermal (free-free) emission (radio) Thermal dust emission (FIR) Synchrotron emission (radio) Condon 1992 van der Kruit 1971; Helou et al. 1985; Condon et al. 1992, Yun et al. 2001; Bell 2003; Obric et al. 2006; Mauch & Sadler 2007 Bell 2003 Radio – IR correlation Star forming galaxies

Star formation rate density [M  / yr / Mpc 3 ] Short-wavelength radiation (e.g. UV) sensitive to dust  radio emission overcomes this bias Compilation based on different star formation estimators (Hα, OII, UV; Hopkins 2004 ) Cosmic star formation history

AGN feedback AGN feedback Faber et al galaxy cluster MS (z=0.2); white = HST, blue = Chandra, red = VLA; NASA.gov 1.QUASAR MODE -Merger driven -Vigorous BH mass growth -Qusar wind gas expells gas out of the galaxy’s center  termination of quasar & starburst phase -Not necessarily linked to radio outflows 2. RADIO MODE - Once a static hot gas halo forms around the galaxy - Modest BH mass growth - Radio outflows heat surrounding gas  truncation of further stellar mass growth Allows good reproduction of observed galaxy properties Different phases of galaxy merger (gas); MPA Croton et al. 2006; Bower et al. 2006; Sijacki et al. 2006, Hopkins et al. 2006…

Allows good reproduction of observed galaxy properties 1. Quasar mode 2. Radio mode Luminosity function of galaxies Croton et al. 2006

Croton et al. 2006: mean BH accretion rate per unit volume averaged over the entire simulation This theoretically derived curve can directly be inferred from radio observations

HOWEVER HOWEVER Deep radio data (rms<15μJy/beam) of a large sample needed !!!

The faint (<1 mJy) radio population 1.4 GHz (20 cm) differential radio source counts (normalized to Euclidian space) flatten below 1 mJy 1.4 GHz (20 cm) differential radio source counts (normalized to Euclidian space) flatten below 1 mJy  rise of a new population not contributing significantly at higher flux levels  rise of a new population not contributing significantly at higher flux levels The composition of this faint radio population is highly controversial (Seymour et al. 2004, 2008, Simpson et al. 2006, Fomalont et al. 2007, Padovani et al. 2007, Smolcic et al. 2008, Kellermann et al. 2008) The composition of this faint radio population is highly controversial (Seymour et al. 2004, 2008, Simpson et al. 2006, Fomalont et al. 2007, Padovani et al. 2007, Smolcic et al. 2008, Kellermann et al. 2008) Bondi et al. (2008) S (mJy) n S 2.5 (sr -1 Jy 1.5 ) FIRST / NVSSCambridge Differential 20 cm source counts (norm. to Euclidian space) sub-mJy radio population: star forming gals + low-power AGN !!!  Robust SF/AGN classfier needed !!!

The COSMOS Survey

COSMOS overview (Scoville et al. 2007)  2 □ O equatorial field  X-ray to radio imaging (~30 bands)  galaxy photo-z accuracy, 0.7% (Ilbert et al 2008)  quasar photo-z accuracy, 1.5% (Salvato et al. 2008)  spectroscopy (VLT-VIMOS + Magellan-IMACS) The COSMOS survey 5σ depth for all existing data and the expected 5σ depth for upcoming or ongoing guaranteed time observations

VLA-COSMOS 20 cm survey NRAO Very Large Array NRAO Very Large Array VLA-COSMOS team: Schinnerer (PI) Smolcic, Carilli, Bondi, Ciliegi, Scoville, Bertoldi, Blain, Impey, Jahnke, Koekemoer, Le Fevre, Urry, Martinez Sansigre, Wang, Datta Pilot project (10hr): A array (Schinnerer et al. 2004) ~ 250 sources (catalog - public) ~ 1 sqrdeg; rms ~ 30  Jy/beam Large project (275hr): A+C array (Schinnerer et al. 2007) ~ 3,642 sources (catalog - public) ~ 2(1) sqrdeg; mean rms ~ 15(10)  Jy/beam; Deep project (62hr): A array ~ 1 sqrdeg; rms ~ 7-8  Jy/beam (central 30’) Radio view of COSMOS field: NRAO Very Large Array NRAO Very Large Array VLA-COSMOS core team: Schinnerer, Smolčić, Carilli, Bondi, Ciliegi, Scoville, Bertoldi, Blain, Impey, Jahnke, Koekemoer, Le Fevre, Urry, Martínez Sansigre, Wang, Datta, Riechers Large project (275hr) : Schinnerer et al. (2004, 2007) ~ 2,400 sources (catalog - public) ~ 2 □ O ; mean rms ~ 10  Jy/beam, 1.5” resolution unique complementary COSMOS data set enabling studies of AGN/SF evolution through cosmic times Deep project (62hr): Schinnerer et al. (to be submitted) ~ 1 □ O ; rms ~ 7  Jy/beam 327 MHz project (24hr): Smolčić et al. (in prep) ~ 2 □ O ; rms ~ 0.5 mJy/beam

What have we (so far) learned from VLA-COSMOS?

The composition of the sub-mJy radio population Bondi et al. (2008) S (mJy) n S 2.5 (sr -1 Jy 1.5 ) Differential 20 cm source counts FIRST / NVSSCambridge Baldwin-Phillips-Terlevich (1981) diagram Kauffmann et al. (2003), Kewley et al. (2001,2006), Obrić et al. (2006), Smolčić et al. (2006, 2008a) New rest-frame color-based method for separating SF from low-luminosity AGN galaxies (i.e. Seyfert, LINERs; Smolčić et al. 2008a)  applied to VLA-COSMOS data Sub-mJy radio population: 1) not dominated by star forming galaxies 2) fair mix of SF and (low-L) AGN galaxies Smolčić et al. (2008; ApJS; 177, z≤1.3: ~ 350 SF & ~ 600 AGN gals.

The radio - (F)IR correlation Current focus on (Sargent et al., in prep.): Current focus on (Sargent et al., in prep.): - quantification of selection effects in view of future deep EVLA & Herschel data - statistically sound treatment of flux limits using survival analysis  evolution of radio-IR relation for star forming systems out to z~1  evolution of radio-IR relation for star forming systems out to z~1 Future work: - Effects of environment (E. Murphy et al., in prep) - separation of star forming systems into different classes of objects (e.g. optical morphology, mass) - stacking of radio population at faint IR fluxes Little or no evolution of the IR/radio ratios at least out to z~1 Smolčić et al. (2008); Sargent et al. (in prep)

The dust-unbiased cosmic star formation z≤1.3 from the VLA-COSMOS survey Good agreement between VLA-COSMOS and Good agreement between VLA-COSMOS and previous radio results (1 order of magnitude smaller sample; Haarsma et al ) previous radio results (1 order of magnitude smaller sample; Haarsma et al ) other SFRD estimates from Hα, OII, UV, IR other SFRD estimates from Hα, OII, UV, IR with dust correction applied where needed with dust correction applied where needed Smolčić et al. (2009, ApJ, 690, 610) Dust attenuation at intermediate redshifts is well understood 20cm lumiosity functions for VLA-COSMOS star forming galaxies (blue) Cosmic star formation history

The dust-unbiased cosmic star formation history for star forming ULIRGs The dust-unbiased cosmic star formation history for star forming ULIRGs (~100 M sol /yr) VLA-COSMOS star forming ULIRGs : VLA-COSMOS star forming ULIRGs : Flatter evolutionary curve compared to IR derived (Le Floc’h et al. 2005) : possibly partially due to AGN contribution at IR wavelengths Flatter evolutionary curve compared to IR derived (Le Floc’h et al. 2005) : possibly partially due to AGN contribution at IR wavelengths Caputi et al. (2007): contribution of AGN dominated ULIRGs in MIR samples higher at z=2 than at z=1 Caputi et al. (2007): contribution of AGN dominated ULIRGs in MIR samples higher at z=2 than at z=1 Smolčić et al. (2009; ApJ, 690, 610) Star formation rate density at z>1 may not be dominated by star forming ULIRGs

Probing SFRs at high z via stacking COSMOS Lyman break galaxy sample of Lee, Capak et al. Carilli et al. (2008; ApJ, 689, 883) Stacking detection: U band drop-outs (2.5 < z < 3.5) Median flux: 0.90 ± 0.21 μJy = 31 ± 7 M SUN /yr = 31 ± 7 M SUN /yr ~ 17 M SUN /yr ~ 17 M SUN /yr  dust attenuation factor ~1.8 << standard attenuation factor of 5  dust attenuation factor ~1.8 << standard attenuation factor of 5 (Steidel et al. 1999, Adelberger & Steidel 2000, Reddy & Steidel 2004) Dust attenuation at high redshifts may be smaller than at lower redshifts Star formation history derived from UDS/UKIDSS BzK selected galaxies stacked in radio (Dunne et al. 2008) c

The evolution of VLA-COSMOS (weak) radio AGN Smolčić et al. (ApJ, sub.) Volume averaged mechanical heating rate Comoving BH accretion rate density 20cm lumiosity functions for VLA- COSMOS AGN (red) Ledlow & Owen (1996) FRI / FRII diagnostic plot for VLA-COSMOS AGN Qualitative agreement between cosmological model and observations is very encouraging for the idea of ‘radio mode’ feedback

Summary & EVLA outlook VLA-COSMOS:  Composition of sub-mJy radio population: fair mix of SF and low-power AGN galaxies  z ≤1.3:  Cosmic evolution of VLA-COSMOS SF and AGN galaxies  First observational insight into ‘radio mode’ feedback beyond the local universe  z ~ 3: stacking down to 1μJy levels that EVLA will be able to observe EVLA-COSMOS:  Deeper 20 cm imaging:  probing radio LIRGs (>10 M SUN /yr) through cosmic time  complete sample of ULIRGs (>100 M SUN /yr) out to high z  probing weak radio AGN out to high z  testing cosmological models  6 cm imaging:  high resolution: radio morphology, composite objects  spectral indices  probing thermal (free-free) radio emission for z>3.5 VLA-COSMOS Large Project limits