Springs Have out Target Guide Worksheet: Significant digits part 2

Slides:



Advertisements
Similar presentations
Hooke’s Law.
Advertisements

Hooke’s law. Calculate the force from a spring when given its spring constant and deflection. Calculate a spring constant given the required force and.
Hooke’s law Condition of equilibrium 1) 2) 3) Hooke’s law.
Elastic Energy. Compression and Extension  It takes force to press a spring together.  More compression requires stronger force.  It takes force to.
Physics 101: Lecture 20, Pg 1 Lecture 20: Ideal Spring and Simple Harmonic Motion l Chapter 9: Example Problems l New Material: Textbook Chapters 10.1.
Physics 151 Week 12 Day Topics: Hooke’s Law and Oscillations (Chs. 8 & 14)  Springs  Hooke’s Law  Applications  Oscillations  Period & Frequency.
Elastic potential energy
Springs And pendula, and energy. Harmonic Motion Pendula and springs are examples of things that go through simple harmonic motion. Simple harmonic motion.
CHapter11 Section 2 solving simple harmonics. Objectives  Identify the amplitude of vibration.  Recognize the relationship between period and frequency.
Springs and Hooke’s Law
Regents Physics Springs.
Young’s Modulus - an extension to Hooke’s Law Main Questions: –Why are mechanical properties important for engineers? –How is Young’s modulus related to.
Springs and Pendulums.
Elastic potential energy
Elastic Force and Energy Stretching or Compressing a spring causes the spring to store more potential energy. The force used to push or pull the spring.
Mr. Jean April 27 th, 2012 Physics 11. The plan:  Video clip of the day  Potential Energy  Kinetic Energy  Restoring forces  Hooke’s Law  Elastic.
Consider an ideal spring. Elastic Potential Energy Hooke’s Law.
Hooke's Law The Physics of Springs.
Hooke’s Law and Elastic Potential Energy
Mechanical Energy. Kinetic Energy, E k Kinetic energy is the energy of an object in motion. E k = ½ mv 2 Where E k is the kinetic energy measured in J.
Work Done by a Varying Force (1D). Force Due to a Spring – Hooke’s Law.
Springs and Hooke’s Law Physics 11. Newton’s Cradle  Explain this…  0HZ9N9yvcU.
Energy 4 – Elastic Energy Mr. Jean Physics 11. The plan:  Video clip of the day  Potential Energy  Kinetic Energy  Restoring forces  Hooke’s Law.
Since the graph is linear and contains (0,0) Force exerted by a spring vs. Elongation Review of an Ideal Spring.
HOOKE’S LAW. OBJECTIVE: 1.Determining the change of lengths of spring on the suspension of weights. 2.Confirming Hooke’s law and determining the spring.
IP Hooke’s Law © Oxford University Press 2011 Hooke’s Law.
Section 1: Simple Harmonic motion
Potential Energy Potential energy can also be stored in a spring when it is compressed; the figure below shows potential energy yielding kinetic energy.
Direct and Inverse.
Recall from Our Spring Lab that the Spring Constant (k) was the slope of the graph of Fs vs. x! Stronger Spring! The Spring constant or “Stiffness Factor”
Work and Energy Physics 1. The Purpose of a Force  The application of a force on an object is done with the goal of changing the motion of the object.
Vibrations and Waves Hooke’s Law Elastic Potential Energy Simple Harmonic Motion.
Ball in a Bowl: F g F N F g F N  F  F Simple Harmonic Motion (SHM) Stable Equilibrium (restoring force, not constant force)
Chapter 12 Vibrations and Waves. Periodic Motion Any repeated motion Examples?
Hooke’s Law. English physicist Robert Hooke (1678) discovered the relationship b/t the hooked mass-spring system’s force and displacement. F elastic =
How to Be Captain Hook: The Third Circle Assignment 6.
Introductory Video: Simple Harmonic Motion Simple Harmonic Motion.
Natural Length Extension Stretched Length No relationship between Force and stretched length Force is proportional to extension.
Spring Force. Compression and Extension  It takes force to press a spring together.  More compression requires stronger force.  It takes force to extend.
Machines Machines can change the direction of a force and/or multiply the force. Work comes in two forms: input and output Work input (W in.
Hooke’s Law. Hooke’s law, elastic limit, experimental investigations. F = kΔL Tensile strain and tensile stress. Elastic strain energy, breaking stress.
Stress and Strain1 Stress Analysis Mechanics: Stress and strain.
Simple Harmonic Motion
Unit 7: Work, Power, and Mechanical Energy.
Structures Matrix Analysis
Unit 4: Oscillatory Motion and Mechanical Waves
Marshmallow Crossbow How does it work?
Chapter 7 Kinetic Energy and Work 第7章 動能與功
A LEVEL PHYSICS Year 1 Stress-Strain Graphs A* A B C
Physics 11 Mr. Jean November 23rd, 2011.
Elastic Potential Energy
Elastic Forces Hooke’s Law.
6-2 Solving Differential Equations
Homework Questions.
(a) Describe what material the spring is made from;
Elastic Objects.
An Example for Engineering Problem on Finding Roots of
Stretching springs and Hooke’s Law
SCI 340 L25 Hooke's law A simple model of elasticity
Hooke’s Law Post Lab Questions
ELASTIC FORCE The force Fs applied to a spring to stretch it or to compress it an amount x is directly proportional to x. Fs = - k x Units: Newtons.
WALT: about Hooke‘s Law
Recall from Our Spring Lab that the Spring Constant (k) was the slope of the graph of Fs vs. x! Stronger Spring! The Spring constant or “Stiffness Factor”
Effects of Forces Change shape.
Ch. 12 Waves pgs
Forging new generations of engineers
Elastic Force – Hooke’s Law
Elastic Energy.
Work, Energy and Power.
Presentation transcript:

Springs Have out Target Guide Worksheet: Significant digits part 2 Reading: What is Hooke’s Law? Note guide: Lesson 105 part 2

Mechanical Engineering of Springs How its made: Springs (5:00 min) http://www.youtube.com/watch?v=omLKbKakDoY List some of the uses of springs mentioned in the video. Why might a mechanical engineer design and produce a spring for a car suspension differently then a spring for a mechanical pencil? What characteristics of the spring should be considered? Your research on Springs used in American Manufacturing

Reading: What is Hooke’s Law? Equation: 𝑭=−𝒌𝒙 Relationship between Force acting on a spring Displacement of a spring “k” is the spring constant – tells us the stiffness of the spring (or about the elasticity of the spring)

http://www.youtube.com/watch?v=MGmeuxohAC0