Trap loss of spin-polarized 4 He* & He* Feshbach resonances Joe Borbely (19-03-2012) Rob van Rooij, Steven Knoop, Wim Vassen.

Slides:



Advertisements
Similar presentations
Un condensat de chrome pour létude des interactions dipolaires. Bruno Laburthe Tolra Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse.
Advertisements

Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute Zero Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute.
Measuring the Speed of Light Jack Young Rich Breazeale Ryan Phelan.
Ultracold Quantum Gases: An Experimental Review Herwig Ott University of Kaiserslautern OPTIMAS Research Center.
Study of universal few-body states in 7 Li - open answers to open questions, or everything I have learned on physics of ultracold lithium atoms. (A technical.
Understanding Feshbach molecules with long range quantum defect theory Paul S. Julienne Joint Quantum Institute, NIST and The University of Maryland EuroQUAM.
Ultracold Alkali Metal Atoms and Dimers: A Quantum Paradise Paul S. Julienne Atomic Physics Division, NIST Joint Quantum Institute, NIST/U. Md 62 nd International.
Making cold molecules from cold atoms
World of ultracold atoms with strong interaction National Tsing-Hua University Daw-Wei Wang.
The Efimov Effect in Ultracold Gases Weakly Bounds Systems in Atomic and Nuclear Physics March , 2010 Institut für Experimentalphysik, Universität.
Rydberg physics with cold strontium James Millen Durham University – Atomic & Molecular Physics group.
Competing instabilities in ultracold Fermi gases $$ NSF, AFOSR MURI, DARPA ARO Harvard-MIT David Pekker (Harvard) Mehrtash Babadi (Harvard) Lode Pollet.
Observation of universality in 7 Li three-body recombination across a Feshbach resonance Lev Khaykovich Physics Department, Bar Ilan University,
Universality in ultra-cold fermionic atom gases. with S. Diehl, H.Gies, J.Pawlowski S. Diehl, H.Gies, J.Pawlowski.
Дубна, 3 декабря 2014 V.S.Melezhik BLTP JINR, Dubna.
Stability of a Fermi Gas with Three Spin States The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites Yi Zhang John Huckans.
Lecture II Non dissipative traps Evaporative cooling Bose-Einstein condensation.
ULTRACOLD COLLISIONS IN THE PRESENCE OF TRAPPING POTENTIALS ZBIGNIEW IDZIASZEK Institute for Quantum Information, University of Ulm, 18 February 2008 Institute.
T. Koch, T. Lahaye, B. Fröhlich, J. Metz, M. Fattori, A. Griesmaier, S. Giovanazzi and T. Pfau 5. Physikalisches Institut, Universität Stuttgart Assisi.
ATOM-ION COLLISIONS ZBIGNIEW IDZIASZEK Institute for Quantum Information, University of Ulm, 20 February 2008 Institute for Theoretical Physics, University.
Experiments with Trapped Potassium Atoms Robert Brecha University of Dayton.
Three-body recombination at vanishing scattering lengths in ultracold atoms Lev Khaykovich Physics Department, Bar-Ilan University, Ramat Gan, Israel.
Observation of an Efimov spectrum in an atomic system Matteo Zaccanti LENS, University of Florence.
Determination of fundamental constants using laser cooled molecular ions.
Helium Spectroscopy Spectroscopy of a forbidden transition in a 4 He BEC and a 3 He degenerate Fermi gas Rob van Rooij, Juliette Simonet*, Maarten Hoogerland**,
Towards a finite ensemble of ultracold fermions Timo Ottenstein Max-Planck-Institute for Nuclear Physics Heidelberg 19th International IUPAP Conference.
Spectroscopy of a forbidden transition in a 4 He BEC and a 3 He degenerate Fermi gas Rob van Rooij, Juliette Simonet*, Maarten Hoogerland**, Roel Rozendaal,
November 12, 2009 | Christian Stahl | 1 Fermion-Fermion and Boson-Boson Interaction at low Temperatures Seminar “physics of relativistic heavy Ions” TU.
Few-body physics with ultracold fermions Selim Jochim Physikalisches Institut Universität Heidelberg.
Experiments with ultracold RbCs molecules Peter Molony Cs Rb.
Collaborations: L. Santos (Hannover) Students: Antoine Reigue, Ariane A.de Paz (PhD), B. Naylor, A. Sharma (post-doc), A. Chotia (post doc), J. Huckans.
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
Efimov Physics with Ultracold Atoms Selim Jochim Max-Planck-Institute for Nuclear Physics and Heidelberg University.
Experimental study of Efimov scenario in ultracold bosonic lithium
LONG-LIVED QUANTUM MEMORY USING NUCLEAR SPINS A. Sinatra, G. Reinaudi, F. Laloë (ENS, Paris) Laboratoire Kastler Brossel A. Dantan, E. Giacobino, M. Pinard.
Stefan Truppe MM-Wave Spectroscopy and Determination of the Radiative branching ratios of 11 BH for Laser Cooling Experiments.
Molecular Deceleration Georgios Vasilakis. Outline  Why cold molecules are important  Cooling techniques  Molecular deceleration  Principle  Theory.
Spin-3 dynamics study in a chromium BEC Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Olivier GORCEIX CLEO/Europe-EQEC.
Efimov physics in ultracold gases Efimov physics in ultracold gases Rudolf Grimm “Center for Quantum Optics” in Innsbruck Austrian Academy of Sciences.
Collaborations: L. Santos (Hannover) Former members: R. Chicireanu, Q. Beaufils, B. Pasquiou, G. Bismut A.de Paz (PhD), A. Sharma (post-doc), A. Chotia.
Experiments with Stark-decelerated and trapped polar molecules Steven Hoekstra Molecular Physics Department ( Gerard Meijer) Fritz-Haber-Institutder Max-Planck-Gesellschaft.
Resonant dipole-dipole energy transfer from 300 K to 300μK, from gas phase collisions to the frozen Rydberg gas K. A. Safinya D. S. Thomson R. C. Stoneman.
Prospects for ultracold metastable helium research: phase separation and BEC of fermionic molecules R. van Rooij, R.A. Rozendaal, I. Barmes & W. Vassen.
Experiments with an Ultracold Three-Component Fermi Gas The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites John Huckans.
Quantum phase transition in an atomic Bose gas with Feshbach resonances M.W.J. Romans (Utrecht) R.A. Duine (Utrecht) S. Sachdev (Yale) H.T.C. Stoof (Utrecht)
Experimental determination of Universal Thermodynamic Functions for a Unitary Fermi Gas Takashi Mukaiyama Japan Science Technology Agency, ERATO University.
Ultracold Helium Research Roel Rozendaal Rob van Rooij Wim Vassen.
Excited state spatial distributions in a cold strontium gas Graham Lochead.
Atoms in optical lattices and the Quantum Hall effect Anders S. Sørensen Niels Bohr Institute, Copenhagen.
QUEST - Centre for Quantum Engineering and Space-Time Research 1 A continuous loading scheme for a dipole trap.
Pairing Gaps in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems Cheng Chin JFI and Physics, University of Chicago Exp.: Rudolf.
Condensed matter physics in dilute atomic gases S. K. Yip Academia Sinica.
B. Pasquiou (PhD), G. Bismut (PhD) B. Laburthe, E. Maréchal, L. Vernac, P. Pedri, O. Gorceix (Group leader) Spontaneous demagnetization of ultra cold chromium.
D. Jin JILA, NIST and the University of Colorado $ NIST, NSF Using a Fermi gas to create Bose-Einstein condensates.
An atomic Fermi gas near a p-wave Feshbach resonance
Adiabatic hyperspherical study of triatomic helium systems
Dipolar relaxation in a Chromium Bose Einstein Condensate Benjamin Pasquiou Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France.
Collisional loss rate measurement of Cesium atoms in MOT Speaker : Wang guiping Date : December 25.
Have left: Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborator: Anne Crubellier (Laboratoire Aimé Cotton) B. Pasquiou.
Phase separation and pair condensation in spin-imbalanced 2D Fermi gases Waseem Bakr, Princeton University International Conference on Quantum Physics.
EMMI Workshop, Münster V.E. Demidov, O. Dzyapko, G. Schmitz, and S.O. Demokritov Münster, Germany G.A. Melkov, Ukraine A.N. Slavin, USA V.L.
Deterministic preparation and control of a few fermion system.
Center for Quantum Physics Innsbruck Center for Quantum Physics Innsbruck Austrian Academy of Sciences Austrian Academy of Sciences University strongly.
TC, U. Dorner, P. Zoller C. Williams, P. Julienne
Magnetization dynamics in dipolar chromium BECs
Dipolar chromium BECs de Paz (PhD), A. Chotia, B. Laburthe-Tolra,
Resonant dipole-dipole energy transfer
Making cold molecules from cold atoms
Lasers and effects of magnetic field
Laboratoire de Physique des Lasers
Presentation transcript:

Trap loss of spin-polarized 4 He* & He* Feshbach resonances Joe Borbely ( ) Rob van Rooij, Steven Knoop, Wim Vassen

Trap loss equation Experimental details: – Setup – Procedure Results with 4 He* – magnetic-field dependent trap loss rates Present work – Feshbach resonance: 3 He*- 4 He* Bose-Fermi quantum gas Outline

Trap loss equation Experimental details: – Setup – Procedure Results with 4 He* – magnetic-field dependent trap loss rates Present work – Feshbach resonance: 3 He*- 4 He* Bose-Fermi quantum gas Outline

Trap loss equation He*: eV In a spin-polarized gas, Penning ionization is forbidden due to spin conservation. Total spin of the colliding particles in the final state cannot exceed 1, whereas initially the total spin is 2 In an unpolarized gas two-body losses yield, Time evolution of trapped density, L 1 : background (one-body) collisions L 2 : two-body collisions In spin-polarized He* PI suppressed by 10 4 → one reason for achieving BEC L 3 : three-body collisions: very large release energy Dominant

However, our detection signal (the MCP) is a measure of atom number, not density We are interested in solving c 2 and c 3 are constants that depend on trap geometry Trap loss equation Axial frequencyRadial frequency time (ms)

1. Collisions with background gas Trap loss equation metastable helium can ionize all atoms (through collisions) - except neon (and ground state helium) atoms

2. The spin-dipole interaction induces two inelastic two-body (L 2 ) collision processes: - Relaxation Induced Penning Ionization (RIPI) - Spin Relaxation (SR) GV Shylapnikov et al, PRL 73, 3247 (1994) PO Fedichev et al, PRA 53, 1447 (1996) V Venturi et al, PRA 60, 4635 (1999) couples Dominate loss mechanism Trap loss equation

3. Recombination can occur due to interaction between spin-polarized 4 He* in the course of three-body collisions (L 3 ) Two-body Penning Ionization spin-polarized helium molecule two-body PI 4 mK >> 1  K Trap loss equation

Experimental details: – Setup – Procedure Results with 4 He* – magnetic-field dependent trap loss rates Present work – Feshbach resonance: 3 He*- 4 He* Bose-Fermi quantum gas Outline

electron bombardment eV 1557 nm 2059 nm 1083 nm 2x ~120 nm 1557 nm laser light 1083 nm laser light MCP Same laser but different frequency detunings for: collimation slowing cooling trapping detection Experimental setup

magnetic field ~100% tranfer magnetic field atom+photon energy Dressed picture of 4 He* in an RF field Experimental Procedure Atoms are confined in the dipole trap Both m=+1 and m=-1 magnetic substates are trappable

Trap loss equation Experimental details: – Setup – Procedure Results with 4 He* – magnetic-field dependent trap loss rates Present work – Feshbach resonance: 3 He*- 4 He* Bose-Fermi quantum gas Outline

One-body loss: L 1 Atomic transfer: BEC thermal assumption: thermal equilibrium holds during one-body decay of a condensate loss of a thermal atom (i.e. collisions with background gas) cause a free place in the otherwise saturated thermal distribution a BEC atom fills the thermal hole (keeps thermal equilibrium) Theory: Experiment: (a) (b) 1.7(2) 1.5(2) 80% - 20% 50% - 50% BEC% - Thermal% long times (> 15 sec)

Three-body loss: L 3 Fix:  Magnetic-field independent  Identical for m=+1 and m=-1 atoms s  Use only m=-1 atoms (since L 2 =0) AS Tychkov et al, PRA 73, (R) (2006) Present result: VU previous result: Seidelin result (modified): S Seidelin et al, PRL 93, (2004)

Two-body loss rate: L 2 Fix:

Two-body loss rate: L 2 N ms N 2 s

Two-body loss rate: L 2 (Comparison with Theory)

Trap loss equation Experimental details: – Setup – Procedure Results with 4 He* – magnetic-field dependent trap loss rates Present work – Feshbach resonance: 3 He*- 4 He* Bose-Fermi quantum gas Outline

Energy Atomic separation, R Feshbach resonance 0 two free atoms entrance channel U bg (R) U bg (R) asymptotically connects to two free atoms in the ultracold gas U b (R) can support molecular bound states near the threshold of the entrance channel Feshbach resonances are a tool to control the interaction strength between atoms (ultracold chemistry - He*Rb Efimov physics - Steven Knoop) In the ultracold domain, collisions take place with atoms that have nearly zero energy scattering length B 0 quintet molecular bound channel singlet U b (R) Zeeman energy of the atomic scattering state becomes equal to that of a molecular bound state because of the difference in magnetic moments coupling EcEc  B What is a Feshbach resonance?

Feshbach resonances in He*   ~1  s B 0 = 99 G  B=2 mG  1 <<  5

21 Feshbach resonance in 3 He*- 4 He* smsms magnetic trap 3 He*(2 3 S f=3/2, m f =-1/2) 4 He*(2 3 S f=1, m f =-1) b A 3He*(23S f=3/2, mf=-3/2) a Dipole trap

RF spectroscopy 3 He*- 4 He* Feshbach resonance Feshbach resonance in 3 He*- 4 He* 3 He*(2 3 S f=3/2, m f =-1/2) + 4 He*(2 3 S f=1, m f =-1) b: 3 He* m f =-1/2 A: 4 He* m f =-1 a: 3 He* m f =-3/2 Energy difference: A+b - Ab Threshold = A+b energy Enhanced trap loss at FR Get information of triplet molecular state RF A+bA+b AbAb A+a no collisions between identical fermions limited by three-body loss rate

Questions?