Codes in reflectometry Numerical Schemes and limitations

Slides:



Advertisements
Similar presentations
Study of propagative and radiative behavior of printed dielectric structures using the finite difference time domain method (FDTD) Università “La Sapienza”,
Advertisements

Chapter 1 Electromagnetic Fields
Simulations of the core/SOL transition of a tokamak plasma Frederic Schwander,Ph. Ghendrih, Y. Sarazin IRFM/CEA Cadarache G. Ciraolo, E. Serre, L. Isoardi,
So far Geometrical Optics – Reflection and refraction from planar and spherical interfaces –Imaging condition in the paraxial approximation –Apertures.
Using a DPS as a Coherent Scatter HF Radar Lindsay Magnus Lee-Anne McKinnell Hermanus Magnetic Observatory Hermanus, South Africa.
1 15th May 2012 Association EURATOM-CEA Shaodong Song Observation of Strong Inward Heat Transport with Off-axis ECRH in Tore Supra Heat pinch experiments.
3D microwave simulation in fusion plasmas Tom WilliamsNSTX-U Monday Physics Meeting, 18 th Nov /23 Tom Williams 1,2 Alf Köhn.
Session: Computational Wave Propagation: Basic Theory Igel H., Fichtner A., Käser M., Virieux J., Seriani G., Capdeville Y., Moczo P.  The finite-difference.
Physics of fusion power Lecture 11: Diagnostics / heating.
Full-wave test of analytical theory for fixed frequency fluctuation reflectometry Motivation Full-wave codes Analytical theory (1D) compared Fluctuation.
ITER reflectometry diagnostics operation limitations caused by strong back and small angle scattering E.Gusakov 1, S. Heuraux 2, A. Popov 1 1 Ioffe Institute,
Statistical Properties of Wave Chaotic Scattering and Impedance Matrices Collaborators: Xing Zheng, Ed Ott, ExperimentsSameer Hemmady, Steve Anlage, Supported.
The Stability of Internal Transport Barriers to MHD Ballooning Modes and Drift Waves: a Formalism for Low Magnetic Shear and for Velocity Shear The Stability.
Laure Vermare, IRW9, Lisbon 3-6th May 1 Turbulence measurements during dimensionless parameters scans on Tore Supra using Doppler reflectometry L. Vermare,
Physics of fusion power Lecture 10 : Running a discharge / diagnostics.
Effects of Magnetic Field on Two-Plasmon Decay Instability in Homogeneous Plasma Xinfeng Sun ( 孙新锋 ), Zhonghe Jiang ( 江中和 ), Xiwei Hu ( 胡希伟 ) School of.
Chapter 33. Electromagnetic Waves What is Physics? Maxwell's Rainbow The Traveling Electromagnetic Wave, Qualitatively The Traveling.
D. Borba 1 21 st IAEA Fusion Energy Conference, Chengdu China 21 st October 2006 Excitation of Alfvén eigenmodes with sub-Alfvénic neutral beam ions in.
1 ST workshop 2008 Conception of LHCD Experiments on the Spherical Tokamak Globus-M O.N. Shcherbinin, V.V. Dyachenko, M.A. Irzak, S.A. Khitrov A.F.Ioffe.
Parallel and Poloidal Sheared Flows close to Instability Threshold in the TJ-II Stellarator M. A. Pedrosa, C. Hidalgo, B. Gonçalves*, E. Ascasibar, T.
Reflectometry on Alcator C-Mod: Status and future upgrades Outline: C-Mod reflectometry Physics examples Upgrades: 1.High frequency 2.Sideband 3.Data acquisition.
S. H. Müller, CRPP, SwitzerlandIAEA TM – Trieste – March 2-4, Basic Turbulence Studies on TORPEX and Challenges in the Theory-Experiment Comparison.
RAY-OPTICAL ANALYSIS OF RADIATION OF A CHARGE FLYING NEARBY A DIELECTRIC OBJECT Ekaterina S. Belonogaya, Sergey N. Galyamin, Andrey V. Tyukhtin Saint Petersburg.
Nonlinear Frequency Chirping of Alfven Eigenmode in Toroidal Plasmas Huasen Zhang 1,2 1 Fusion Simulation Center, Peking University, Beijing , China.
Lecture 6.
Incoherent Scattering
IPP - Garching Reflectometry Diagnostics and Rational Surface Localization with Fast Swept Systems José Vicente
Controlling the dynamics time scale of a diode laser using filtered optical feedback. A.P.A. FISCHER, Laboratoire de Physique des Lasers, Universite Paris.
Introduction to the Particle In Cell Scheme for Gyrokinetic Plasma Simulation in Tokamak a Korea National Fusion Research Institute b Courant Institute,
Challenging problems in kinetic simulation of turbulence and transport in tokamaks Yang Chen Center for Integrated Plasma Studies University of Colorado.
The principle of SAMI and some results in MAST 1. Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, , China 2. Culham Centre.
Recent advances in wave kinetics
0 APS-Sherwood Texas 2006-April Study of nonlinear kinetic effects in Stimulated Raman Scattering using semi- Lagrangian Vlasov codes Alain Ghizzo.
Dynamics of ITG driven turbulence in the presence of a large spatial scale vortex flow Zheng-Xiong Wang, 1 J. Q. Li, 1 J. Q. Dong, 2 and Y. Kishimoto 1.
The Propagation of Electromagnetic Wave in Atmospheric Pressure Plasma Zhonghe Jiang XiWei Hu Shu Zhang Minghai Liu Huazhong University of Science & Technology.
Fyzika tokamaků1: Úvod, opakování1 Tokamak Physics Jan Mlynář 8. Heating and current drive Neutral beam heating and current drive,... to be continued.
RF simulation at ASIPP Bojiang DING Institute of Plasma Physics, Chinese Academy of Sciences Workshop on ITER Simulation, Beijing, May 15-19, 2006 ASIPP.
The propagation of a microwave in an atmospheric pressure plasma layer: 1 and 2 dimensional numerical solutions Conference on Computation Physics-2006.
Enhancing One‐Dimensional FDTD
Association EURATOM-CEA Electromagnetic Self-Organization and Turbulent Transport in Tokamaks G. Fuhr, S. Benkadda, P. Beyer France Japan Magnetic Fusion.
APS DPP 2006 October Adaptive Extremum Seeking Control of ECCD for NTM Stabilization L. Luo 1, J. Woodby 1, E. Schuster 1 F. D. Halpern 2, G.
Surface Plasmon Resonance
INFSO-RI Enabling Grids for E-sciencE Workflows in Fusion applications José Luis Vázquez-Poletti Universidad.
(National Institute for Fusion Science, Japan)
Max-Planck-Institut für Plasmaphysik, EURATOM Association Different numerical approaches to 3D transport modelling of fusion devices Alexander Kalentyev.
Electron inertial effects & particle acceleration at magnetic X-points Presented by K G McClements 1 Other contributors: A Thyagaraja 1, B Hamilton 2,
M. Onofri, F. Malara, P. Veltri Compressible magnetohydrodynamics simulations of the RFP with anisotropic thermal conductivity Dipartimento di Fisica,
Lecture 5.
A. Vaivads, M. André, S. Buchert, N. Cornilleau-Wehrlin, A. Eriksson, A. Fazakerley, Y. Khotyaintsev, B. Lavraud, C. Mouikis, T. Phan, B. N. Rogers, J.-E.
DIFFER is part ofand Modelling of ECCD applied for NTM stabilization E. Westerhof FOM Institute DIFFER Dutch Institute for Fundamental Energy Research.
ASIPP, 24/ Modelling of near LH effects on the SOL, in view of extrapolation to ITER V. Petrzilka 1, G. Corrigan 2, P. Belo 3, A. Ekedahl 4, K.
Modelling and Simulation of Passive Optical Devices João Geraldo P. T. dos Reis and Henrique J. A. da Silva Introduction Integrated Optics is a field of.
Using microwaves to study fast ion driven modes in NSTX N.A. Crocker, S. Kubota, W.A. Peebles, G. Wang, T. Carter (UCLA); E.D. Fredrickson, B.P. LeBlanc,
21st IAEA Fusion Energy Conf. Chengdu, China, Oct.16-21, /17 Gyrokinetic Theory and Simulation of Zonal Flows and Turbulence in Helical Systems T.-H.
Seminar PPPL, 25 January 2011 Association Euratom-Cea 1 Interplay between neoclassical and turbulent transport on Tore Supra Acknowledgements: J. Abiteboul,
53rd Annual Meeting of the Division of Plasma Physics, November , 2010, Salt Lake City, Utah 5-pin Langmuir probe configured to measure the Reynolds.
Simulation of Turbulence in FTU M. Romanelli, M De Benedetti, A Thyagaraja* *UKAEA, Culham Sciance Centre, UK Associazione.
IAEA-TM 02/03/2005 1G. Falchetto DRFC, CEA-Cadarache Association EURATOM-CEA NON-LINEAR FLUID SIMULATIONS of THE EFFECT of ROTATION on ION HEAT TURBULENT.
Plasma Turbulence in the HSX Stellarator Experiment and Probes C. Lechte, W. Guttenfelder, K. Likin, J.N. Talmadge, D.T. Anderson HSX Plasma Laboratory,
Supported by Experimental studies of ion-scale fluctuations via microwave imaging reflectometry in KSTAR 5 th EAST-Asia School and Workshop (EASW) on Laboratory,
HIGH FREQUENCY CAPACITIVELY COUPLED PLASMAS: IMPLICIT ELECTRON MOMENTUM TRANSPORT WITH A FULL-WAVE MAXWELL SOLVER* Yang Yang a) and Mark J. Kushner b)
TH/7-1Multi-phase Simulation of Alfvén Eigenmodes and Fast Ion Distribution Flattening in DIII-D Experiment Y. Todo (NIFS, SOKENDAI) M. A. Van Zeeland.
Member of the Helmholtz Association T. Zhang | Institute of Energy Research – Plasma Physics | Association EURATOM – FZJ Radial Correlation Analysis of.
FDTD Simulation of Diffraction Grating Displacement Noise 1 Daniel Brown University of Birmingham AEI, Hanover - 14/12/2010.
A systematic study of cross-talk limitations in RPC timing
Turbulence wave number spectra reconstruction
Gyrofluid Turbulence Modeling of the Linear
THE METHOD OF LINES ANALYSIS OF ASYMMETRIC OPTICAL WAVEGUIDES Ary Syahriar.
Equilibrium Plasma Parameters Turbulent Wave Number Spectra
Transmission Lines and Waveguides
Presentation transcript:

Codes in reflectometry Numerical Schemes and limitations S. Heuraux €, M Schubert£, F. da Silva¥ conjointement avec F. Clairet£, R. Sabot£, S. Hacquin£, A. Sirinelli$, T. Gerbaud$, L. Vermare, P. Hennequin', I. Boucher€, E. Gusakov°, A. Popov°, M. Irzak°, N. Kosolapova° et F. da Silva¥ €IJL-NANCY UMR CNRS 7198, Université Henri Poincaré Nancy I BP 70239, 54506 Vandoeuvre Cedex - France £Association Euratom-CEA_Cadarache 13108 St Paul-lez-Durance – France 'LPTP École Polytechnique Palaiseau-France °IOFFE Institut, St Petersbourg Russia ¥Centro de Fusão Nuclear – Associação EURATOM / IST Av. Rovisco Pais, 1049-001 Lisboa, Portugal $UKEA JET Culham Science Centre 
Abingdon - OX14 3DB - United Kingdom

Transport coefficients : turbulent >> Neoclassical The understanding of the turbulent transport is key point for the energy production through the fusion plasma Neoclassical (collisions) Anomalous => Turbulence (ne>> B, Te…) Transport mechanisms Transport coefficients : turbulent >> Neoclassical Diagnostics are needed to access to the turbulence parameters Too hot to be probed by material tools (except in the edge until the last closed flux surface LCFS) Only electromagnetic waves can be used

Electromagnetic (EM) wave for probing plasma ? Quasi optic approximation : Interferometry Polarimetry Contrast Phase imaging Thompson scattering Spectroscopy Microwaves are more appropriated to diagnose turbulence ~ f (Bragg scattering) Reflectometry is a versatile diagnostic which is able to provide turbulence parameters: ne(r) absolute density fluctuation profile, S(kr)& S(kpol) radial & poloidal wavenumber spectra, S() frequency spectrum, lc correlation length, Vpol turbulence velocity…

Diagnostic for density profile Principle of reflectometry (1) Diagnostic for density profile FMCW Reflectometers   mode X or O: (t)= t + o, () -> ne(r ), ne(r), S(kr) .... Fluctuating Plasma probing wave Cut-off layer E 1 . e ( i 2  F t ) -  3 p S g n a l ~ A M x r = 5 G H z   s P o u m W / N 4 d B Density profiles or Abel inversion F. Clairet et al Rev Sci I. (2003) 74, 1481, F. Clairet et al PPCF 46, 1567 (2004).

Diagnostics of the turbulence Principle of reflectometry (2) Diagnostics of the turbulence -Fluctuation - Reflectometer O-X-mode (110-155 GHz, fast hopping system)  = o, (t) -> ne(t) -> S() sampling rate 1MHz M. Schubert Names 2007& EPS 2008 -Doppler Reflectometer X or O-mode (50-75, 75-110 GHz, fast hopping system)  = o, (t) -> Vpol , S(kpol)  Fluctuating Plasma R. Sabot et al, Int. Journal of Infrared and Millimeter Waves (2004) 25 229-246. P. Hennequin et al, Rev. Sci. I. (2004) 75 3881. F. da Silva et al Nuclear Fusion 46, S816 (2006)..

Principle of reflectometry (3) Radial or poloidal Correlation Reflectometers  Correlation length measurement 1, 1 2, 2 Intercorrelation length lcphase high lcsignal signal fct of amplitude <E1ei1 E2ei2> Vacuum Plasma 2 regimes for small kf values       linear => lc  log(∆)       NL => l cNL < lc linear correlation length lc Gusakov et al PPCF (2004) 46, 1393 Leclert et al PPCF (2006) 48, 1389 Gusakov et al EPS (2009)

Density fluctuations induce  = WKB +  Effects of density fluctuations on the reflectometer signal Principle source detector (t) A(t) [(t)] (t'), (t') [1; 2] ( /t) Density profile Density fluctuations induce  = WKB +   = <  Fixed frequency  (t) => S() Frequency sweep  () => S(kf) Heuraux et al., Rev. Sci. I (2003) 74, 1501, L. Vermare et al, Plasma Phys Cont Fusion 47, 1895 (2005) T. Gerbaud et al 77, 10E928 (2006).

Effects of density fluctuations on the reflectometer signal In blue Reflection at cut-off layer NO,X (xc)= 0 Amplitude modulation Destructive interference Doppler shift n(t) In magneta Forward scattering Beam widening Doppler shift V In red Bragg backscattering => kf = 2 kloc(x) phase fluctuations Localized process in ne(r) F. Da Silva et al Nuclear Fusion 46, S816 (2006); F. Da Silva et al & A. Popov et al IRW8 reflectometry meeting 2-4 May 2007

Effects of density fluctuations: destructive interference electric field for ≠ positions of the islands, fixed  O point on the waveguide axis X point on the waveguide axis O Mode Frequency sweep 25-40 GHz Island length10o width 4o Amplitude of reflected wave fct of  Ez island length 40 o Shifted Position / pt X Same behaviour for single structure island + fluctuation -> < amplitude > F. Da Silva et al Rev. Sci. Instrum. 74, 1497-1501 (2003)

Reflectometry Diagnostics in Tokamaks Why Reflectometry Simulations ? Reflectometry Diagnostics in Tokamaks Fast sweep frequency reflectometers O or X-mode Plasma Position Reflectoemter -Fluctuation reflectometer -Doppler Reflectometer -Correlation Reflectometer Fluctuating Plasma probing wave f Cut-off

Solutions to some simulation problem Monomode Wave Injection in oversized wave guide Realistic description of EM probing beam Unidirectional Transparent Source (UTS) for frequency sweep UTS needed J. of Computational Physics 174, 1 (2001), J. of Computational Physics 203, 467 (2005), J. Plasma Physics 72, 1205 (2006), RSI 79, 10F104 (2008)

From ray tracing to wave equation (1) Numerical Tools needed for ITER plasma position studies From ray tracing to wave equation (1) Quasi-optic description without scattering Ray tracing Single mode description D(,k,r,t)=0 Set of coupled Odes to solve RK45 Can be extended to Gaussian beam propagation by one ODE associated to amplitude

From ray tracing to wave equation (2) Monochromatic and single polarisation probing system Helmholtz's equation (full-wave) Hyp: monochromatic wave, steady state plasma (∆t or corr >> 4rc/c) Single mode description: Computation of the index N(r) Finite Difference 4th order (Numerov) Be careful in multi dimensional case, possible cross derivatives more complicated to solve No Doppler

Finite Element Method Monochromatic multi-polarisation probing system Actually only few developments on FEM with dispersive media In plasma only using equivalent dielectric (Ph Lamalle for ICRH or F. Braun & L. Colas) for ICRH Accurate method in vacuum and in complex geometry (commercial software) ALCYON was ICRH code based on functionals, if will be replaced by EVE code developed by R. Dumont (CEA_cadarache) and needs a lot of memory (~10-20 Gbytes) In the case of reflectometry possible ? Yes EVE

From ray tracing to wave equation (3) Quasi steady state plasma Shrödinger like's equation (full-wave) Hyp: quasi-monochromatic wave quasi steady state plasma (∆t or corr >> 4rc/c) Single mode description: Computation of the index N(r) Parabolic Restriction on dispersion effects, Quasi-paraxial approximation Lin et al, Plasma Phys. Cont. Fusion 40 L1 (2001)

From ray tracing to wave equation (4) Time dependent physical processes or probing system wave equation (quasi-steady state medium) Hyp: (tf, ∆t or corr >> 4rc/c) Finite Difference + pE rewritting Hacquin et al, J. of Computational Physics 174, 1 (2001), O-mode or isotrpic plasma Set of coupled partial differential equations associated to X-mode V = V/VD where VD=Eo/Bo and E= E/Eo Cohen et al, Plas. Phys. Cont Fusion 40, 75 (1998),

From ray tracing to wave equation (5) Turbulence dynamics, fast events wave equation (time-depend medium) Fast gradient motion, up or down frequency shift amplitude variation Hyp: single mode polarisation O-mode or isotrpic plasma Finite Difference + pE rewritting + RK45 Just to add tn in the Set of coupled partial differential equations associated to X-mode Frequency upshift with tn

Cross polarisation simulations B measurements 1D Case: O-mode and X-mode Hojo et al, J. of Phys. Soc Jpn. 67, 2574 (1998), O-mode X-mode Finite difference

Full description: Maxwell's equations Velocity field mapping, Shear layer detection Hyp: linear response of the plasma  total density of charges j current density Associated model fluid or kinetic 60 GHz TE and TM are usually treated separately Poloidal direction Yee's algorithm + J solver x/o Radial direction 50 cm F. da Silva et al , J Plasma Phys. 72 1205 (2006) and Rev. Sci Instr. 79, 10F104 (2008)

One example: ITER Plasma Position Reflectometer

Long Terms Projects Blob signature, single event detection (condition requirements) Role of the velocity shear layers (spectrum wings ?)

Reflectometry Computation Requirements (1) To describe the forward scattering effects (long wavelength contribution) To recover the theoretical results of the forward scattered power much larger mesh size is required Usefulness of the testing of the code by using analytical results Be careful on the choice of the turbulence generator: modes summation, burst superposition, …. or coming from turbulence code BUT has intrinsic limitations

Reflectometry Computation Requirements (2) To describe ITER case full size: 1000 vacuum wavelengths -> Helmholtz code (4th order)-> 14 pts/wavelength -> FDTD code -> 20pts/wavelengh and 40 pts/period Helmholtz scheme characteristics : Memory  N2 with UMF pack library computation time  N3 Time series long enough to have a good statistics results for the forward scattered power better to use Yee's algorithm Absorbing boundary conditions to avoid can satisfy to resonant conditions, Needs of real transparent boundary conditions

European Reflectometry Computation consorsium Full-wave european codes in Reflectometry : Helmholtz's code (1D&2D, O and X) CEA, IJL, LPTP Wave equation code (1D &/or 2D, O &/or X) TEXTOR, IJL Maxwell's equations code (2D, O or X) IST, IJL, CIEMAT, ASDEX, Stuttgart Project: 3D code Maxwell's equation O and X-mode (ITM group) To do What ? fundamental studies (forward scattering effects,….) new diagnostic development (S(kr) fast sweep and radial correlation, …) interpretation of experiments (Doppler, correlation fluctuation,…) ITER design (plasma position reflectometer,…) Pb turbulence modelling which one, mode superposition, burst emission,….

Conclusions and proposals of further studies (1/2) -2D full-wave simulations seem to show that it is possible to determine the position of the LCFS with ITER spatial resolution specification when the probing beam corresponds to the perpendicular of the LCFS. -Reconstruction density profile should be improved to treat the parasitic resonances. -Full-wave simulations including high amplitude of edge density fluctuations has to be done according to the electric field structure see below (role of the k - spectrum and of the peeling modes) dominated by Bragg backscattering and by forward scattering

Conclusions and proposals of further studies (2/2) High density fluctuation amplitude at the edge induces modifications of the reconstructed density profile as show in F. da Silva et al paper. This effect should be also taken into account in further studies. -The effect (toroidal deviation) of the shear magnetic field on the probing beam propagation has been neglected until now, this point should be verified . -The parasitic resonances should be also studied in details ( 3D full-wave simulations are required, should be done in vacuum) F. da Silva et al EPMESC IX, 22-27 November Macau "Computational methods in Engineering and science"ed A.A Balkema ISBN 9058095673, p233 (2003).