1 Programming with OpenGL Part 3: Three Dimensions Yuanfeng Zhou Shandong University.

Slides:



Advertisements
Similar presentations
Basic of computer graphics with OpenGL. Handful graphics function  OpenGL :  by silicon graphics  PHIGS :  Programmer’s Hierarchical Graphics System.
Advertisements

1 Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009 Programming with OpenGL Part 3: Three Dimensions.
OpenGL (Graphics Library) Software Interface to graphics software Allows to create interactive programs that produce color images of moving 3D objects.
Draw a Simple Object. Example 1/4 #include “ glut.h ” void display(); void reshape(GLsizei w, GLsizei h); void main(int argc, char** argv){ glutInit(&argc,
CSC 461: Lecture 51 CSC461 Lecture 5: Simple OpenGL Program Objectives: Discuss a simple program Discuss a simple program Introduce the OpenGL program.
1 Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 Programming with OpenGL Part 2: Complete Programs Ed Angel Professor of Computer Science,
1 CSC461 Lecture 7: 3D Programming in OpenGL Objectives: Develop 2D and 3D examples -- Sierpinski gasket: a fractal Develop 2D and 3D examples -- Sierpinski.
Sierpinski Gasket Program
CAP 4703 Computer Graphic Methods Prof. Roy Levow Lecture 2.
Geometric Primitives Used in Open GL Polygons Polygon is : Flat shape with three or more straight sides. It could be either : convex or concave.
Demetriou/Loizidou – ACSC330 – Chapter 2 Graphics Programming Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science Frederick Institute.
Computer Graphics CS 385 January 31, Fractals Some definitions Object which is self-similar at all scales. Regardless of scale the same level of.
Graphics Programming Chapter 2. CS 480/680 2Chapter 2 -- Graphics Programming Introduction: Introduction: Our approach is programming oriented. Our approach.
1 Figures are extracted from Angel's book (ISBN x) The Human Visual System vs The Pinhole camera Human Visual System Visible Spectrum Pinhole.
Introduction to GL Geb Thomas. Example Code int main(int argc, char **argv) { glutInit(&argc, argv); glutInitDisplayMode ( GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
Basic of computer graphics with OpenGL
1Computer Graphics Programming with OpenGL Three Dimensions – 2 Lecture 7 John Shearer Culture Lab – space 2
Chun-Yuan Lin Graphics Programming 2015/11/17 1 CG.
1 Introduction to Computer Graphics with WebGL Ed Angel Professor Emeritus of Computer Science Founding Director, Arts, Research, Technology and Science.
1Computer Graphics Programming with OpenGL Three Dimensions Lecture 06 John Shearer Culture Lab – space 2
Computer Graphics I, Fall 2010 Programming with OpenGL Part 3: Three Dimensions.
1 Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009 Programming with OpenGL Review.
1 Chapter 2: Graphics Programming Bryson Payne CSCI 3600 NGCSU.
CS 480/680 Computer Graphics Programming with Open GL Part 6: Three Dimensions Dr. Frederick C Harris, Jr. Fall 2011.
COMPUTER GRAPHICS Hochiminh city University of Technology Faculty of Computer Science and Engineering CHAPTER 02: Graphics Programming.
Draw a Simple Object. Pixel pipeline Vertex pipeline Course Map Transformation & Lighting Primitive assembly Viewport culling & clipping Texture blending.
1 Chapter 2 Graphics Programming. 2 Using OpenGL in Visual C++ – 1/3 Opengl32.dll and glu32.dll should be in the system folder Opengl32.lib and glu32.lib.
1 E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012 Programming with OpenGL Part 2: Complete Programs Ed Angel Professor.
Doç. Dr. Cemil Öz SAÜ Bilgisayar Mühendisliği Dr. Cemil Öz.
Geometric Primitives Used in Open GL Drawing Triangles glBegin(GL_TRIANGELS); glVertex2i(p0); glVertex2i(p1); glVertex2i(p2); glVertex2i(p3); glVertex2i(p4);
OpenGL Basic Drawing 2003 Spring Keng Shih-Ling
1 Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 Programming with OpenGL Part 3: Three Dimensions Ed Angel Professor of Computer Science,
1 Programming with OpenGL Part 2: Complete Programs.
OpenGL API 2D Graphic Primitives Angel Angel: Interactive Computer Graphics5E © Addison-Wesley
1 E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012 Programming with OpenGL Part 6: Three Dimensions Ed Angel Professor.
CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008.
31/1/2006Based on: Angel (4th Edition) & Akeine-Möller & Haines (2nd Edition)1 CSC345: Advanced Graphics & Virtual Environments Lecture 2: Introduction.
OpenGL Basic Drawing Jian-Liang Lin A Smidgen of OpenGL Code #include main() { InitializeAWindowPlease(); glClearColor (0.0, 0.0, 0.0, 0.0); glClear.
Introduction to Graphics Programming. Graphics API.
Graphics Graphics Korea University kucg.korea.ac.kr Graphics Programming 고려대학교 컴퓨터 그래픽스 연구실.
CSC Graphics Programming Budditha Hettige Department of Statistics and Computer Science.
Computer Graphics I, Fall Programming with OpenGL Part 2: Complete Programs.
Computer Graphics (Fall 2003) COMS 4160, Lecture 5: OpenGL 1 Ravi Ramamoorthi Many slides courtesy Greg Humphreys.
CS 480/680 Computer Graphics Programming with Open GL Part 2: Complete Programs Dr. Frederick C Harris, Jr. Fall 2011.
Program Studi S-1 Teknik Informatika FMIPA Universitas Padjadjaran
Graphics Programming Chun-Yuan Lin CG 2018/5/15.
CS5500 Computer Graphics March 2, 2006.
Course code:10CS65 | Computer Graphics and Visualization
Programming with OpenGL Part 2: Complete Programs
Programming with OpenGL Part 1: Background
Materi Anatomi OpenGL Fungsi GLUT Posisi Kamera Proyeksi
Programming with OpenGL Part 3: Three Dimensions
OpenGL API 2D Graphic Primitives
Programming with OpenGL Part 2: Complete Programs
Graphics Programming (I)
OpenGL (Open Graphics Library) Mr. B.A.Swamy Assistant Professor Dept of CSE.
Introduction to Computer Graphics with WebGL
גרפיקה ממוחשבת: מבוא ל-OpenGL
CSC461: Lecture 24 Lighting and Shading in OpenGL
Programming with OpenGL Part 3: Three Dimensions
Introduction to OpenGL
Introduction to Computer Graphics with WebGL
Programming with OpenGL Part 2: Complete Programs
Programming with OpenGL Part 2: Complete Programs
Programming with OpenGL Part 6: Three Dimensions
Programming with OpenGL Part 3: Three Dimensions
Programming with OpenGL Part 2: Complete Programs
Angel: Interactive Computer Graphics5E © Addison-Wesley 2009
Programming with OpenGL Part 3: Three Dimensions
Angel: Interactive Computer Graphics5E © Addison-Wesley 2009
Presentation transcript:

1 Programming with OpenGL Part 3: Three Dimensions Yuanfeng Zhou Shandong University

2 Review Keywords: 1.Development 2.State machine 3.Functions (formats), callback function 4.Simple cube program 5.Simple viewing 6.OpenGL primitives (polygon) 7.Attributes (color)

3 Objectives Develop a more sophisticated three- dimensional example ­Sierpinski gasket: a fractal Introduce hidden-surface removal Plotting implicit functions

Random Sierpinski Gasket 4

main code void main(int argc, char** argv) { /* Standard GLUT initialization */ glutInit(&argc, argv); glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB); glutInitWindowSize(500,500); /* 500 × 500 pixel window */ glutInitWindowPosition(0,0); /* place window top left on display */ glutCreateWindow("Sierpinski Gasket"); /* window title */ glutDisplayFunc(display); /* display callback invoked when window opened */ myinit(); /* set attributes */ glutMainLoop(); /* enter event loop */ } 5

init code void myinit(void) { /* attributes */ glClearColor(1.0, 1.0, 1.0, 1.0); /* white background */ glColor3f(1.0, 0.0, 0.0); /* draw in red */ /* set up viewing */ /* 50.0 × 50.0 camera coordinate window with origin lower left */ glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluOrtho2D(0.0, 50.0, 0.0, 50.0); glMatrixMode(GL_MODELVIEW); } 6

display code void display(void) { /* A triangle */ GLfloat vertices[3][2]={{0.0,0.0},{25.0,50.0},{50.0,0.0}}; int i, j, k; GLfloat p[2] ={0,0}; /* an arbitrary initial point inside traingle */ glClear(GL_COLOR_BUFFER_BIT); /* clear the window */ glBegin(GL_POINTS); /* compute and plots 5000 new points */ for( k=0; k<10000; k++) { j=rand()%3; /* pick a vertex at random */ /* Compute point halfway between selected vertex and old point */ p[0] = (p[0]+vertices[j][0])/2.0; p[1] = (p[1]+vertices[j][1])/2.0; /* plot new point */ glVertex2fv(p); } glEnd(); glFlush(); /* clear buffers */ } 7

Results 8

9 Three-dimensional Applications In OpenGL, two-dimensional applications are a special case of three-dimensional graphics Going to 3D ­Not much changes ­Use glVertex3*( ) ­Have to worry about the order in which polygons are drawn or use hidden-surface removal ­Polygons should be simple, convex, flat

10 The gasket as a fractal Consider the filled area (black) and the perimeter (the length of all the lines around the filled triangles) As we continue subdividing ­the area goes to zero ­but the perimeter goes to infinity This is not an ordinary geometric object ­It is neither two- nor three-dimensional It is a fractal (fractional dimension) object

Fractal Geometry (From 1975) The gasket is self-similar. That is, it is made up of smaller copies of itself. 11

Fractal Geometry 12

13 Sierpinski Gasket (2D) Start with a triangle Connect bisectors of sides and remove central triangle Repeat

14 Example Five subdivisions Fifteen

15 Gasket Program #include /* initial triangle */ GLfloat v[3][2]={{-1.0, -0.58}, {1.0, -0.58}, {0.0, 1.15}}; int n; /* number of recursive steps */

16 Draw one triangle void triangle( GLfloat *a, GLfloat *b, GLfloat *c) /* display one triangle */ { glVertex2fv(a); glVertex2fv(b); glVertex2fv(c); }

17 Triangle Subdivision void divide_triangle(GLfloat *a, GLfloat *b, GLfloat *c, int m) { /* triangle subdivision using vertex numbers */ GLfloat v0[2], v1[2], v2[2]; int j; if(m>0) { for(j=0; j<2; j++) v0[j]=(a[j]+b[j])/2; for(j=0; j<2; j++) v1[j]=(a[j]+c[j])/2; for(j=0; j<2; j++) v2[j]=(b[j]+c[j])/2; divide_triangle(a, v0, v1, m-1); divide_triangle(c, v1, v2, m-1); divide_triangle(b, v2, v0, m-1); } else triangle(a,b,c); /* draw triangle at end of recursion */ }

18 display and init Functions void display() { glClear(GL_COLOR_BUFFER_BIT); glBegin(GL_TRIANGLES); divide_triangle(v[0], v[1], v[2], n); glEnd(); glFlush(); } void myinit() { glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluOrtho2D(-2.0, 2.0, -2.0, 2.0); glMatrixMode(GL_MODELVIEW); glClearColor (1.0, 1.0, 1.0,1.0) glColor3f(0.0,0.0,0.0); }

19 main Function int main(int argc, char **argv) { cout<<" 请输入迭代次数 "; cin>>n; glutInit(&argc, argv); glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB); glutInitWindowSize(500, 500); glutCreateWindow("Sierpinski Gasket"); glutDisplayFunc(display); myinit(); glutMainLoop(); }

20 Efficiency Note By having the glBegin and glEnd in the display callback rather than in the function triangle and using GL_TRIANGLES rather than GL_POLYGON in glBegin, we call glBegin and glEnd only once for the entire gasket rather than once for each triangle

21 Moving to 3D We can easily make the program three- dimensional by using GLfloat v[3][3] glVertex3f glOrtho But that would not be very interesting Instead, we can start with a tetrahedron

22 3D Gasket We can subdivide each of the four faces Appears as if we remove a solid tetrahedron from the center leaving four smaller tetrahedra

23 Example after 5 iterations

24 triangle code void triangle( GLfloat *a, GLfloat *b, GLfloat *c) { glVertex3fv(a); glVertex3fv(b); glVertex3fv(c); }

25 subdivision code void divide_triangle(GLfloat *a, GLfloat *b, GLfloat *c, int m) { GLfloat v1[3], v2[3], v3[3]; int j; if(m>0) { for(j=0; j<3; j++) v1[j]=(a[j]+b[j])/2; for(j=0; j<3; j++) v2[j]=(a[j]+c[j])/2; for(j=0; j<3; j++) v3[j]=(b[j]+c[j])/2; divide_triangle(a, v1, v2, m-1); divide_triangle(c, v2, v3, m-1); divide_triangle(b, v3, v1, m-1); } else(triangle(a,b,c)); }

26 tetrahedron code void tetrahedron(int m) { glColor3f(1.0,0.0,0.0); divide_triangle(v[0], v[1], v[2], m); glColor3f(0.0,1.0,0.0); divide_triangle(v[3], v[2], v[1], m); glColor3f(0.0,0.0,1.0); divide_triangle(v[0], v[3], v[1], m); glColor3f(0.0,0.0,0.0); divide_triangle(v[0], v[2], v[3], m); }

Reshape code void myReshape(int w, int h) { glViewport(0, 0, w, h); glMatrixMode(GL_PROJECTION); glLoadIdentity(); if (w <= h) glOrtho(-2.0, 2.0, -2.0 * (GLfloat) h / (GLfloat) w, 2.0 * (GLfloat) h / (GLfloat) w, -10.0, 10.0); else glOrtho(-2.0 * (GLfloat) w / (GLfloat) h, 2.0 * (GLfloat) w / (GLfloat) h, -2.0, 2.0, -10.0, 10.0); glMatrixMode(GL_MODELVIEW); glutPostRedisplay(); } 27

28 Almost Correct Because the triangles are drawn in the order they are defined in the program, the front triangles are not always rendered in front of triangles behind them get this want this

29 Hidden-Surface Removal We want to see only those surfaces in front of other surfaces OpenGL uses a hidden-surface method called the z-buffer algorithm that saves depth information as objects are rendered so that only the front objects appear in the image

30 Using the z-buffer algorithm The algorithm uses an extra buffer, the z-buffer, to store depth information as geometry travels down the pipeline It must be ­Requested in main.c glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH) ­Enabled in init.c glEnable(GL_DEPTH_TEST) ­Cleared in the display callback glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)

main code void main(int argc, char **argv) { cout<<" 请输入迭代次数 "; cin>>n; glutInit(&argc, argv); glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH); glutInitWindowSize(500, 500); glutCreateWindow("3D Gasket"); glutReshapeFunc(myReshape); glutDisplayFunc(display); glEnable(GL_DEPTH_TEST); glClearColor (1.0, 1.0, 1.0, 1.0); glutMainLoop(); } 31

32 Surface vs Volume Subdvision In our example, we divided the surface of each face We could also divide the volume using the same midpoints The midpoints define four smaller tetrahedrons, one for each vertex Keeping only these tetrahedrons removes a volume in the middle See text for code

33 subdivision code void divide_tetra(GLfloat *a, GLfloat *b, GLfloat *c, GLfloat *d, int m) { GLfloat mid[6][3]; int j; if(m>0) { /* compute six midpoints */ for(j=0; j<3; j++) mid[0][j]=(a[j]+b[j])/2; for(j=0; j<3; j++) mid[1][j]=(a[j]+c[j])/2; for(j=0; j<3; j++) mid[2][j]=(a[j]+d[j])/2; for(j=0; j<3; j++) mid[3][j]=(b[j]+c[j])/2; for(j=0; j<3; j++) mid[4][j]=(c[j]+d[j])/2; for(j=0; j<3; j++) mid[5][j]=(b[j]+d[j])/2; /* create 4 tetrahedrons by subdivision */ divide_tetra(a,mid[0],mid[1],mid[2], m-1); divide_tetra(mid[0],b,mid[3],mid[5], m-1); divide_tetra(mid[1],mid[3],c,mid[4], m-1); divide_tetra(mid[2],mid[4],d,mid[5], m-1); } else tetra(a,b,c,d); /* draw tetrahedron at end of recursion */ }

34 Volume Subdivision

Plotting implicit functions 2D: f(x,y)=0; 3D: f(x,y,z)=0; Sphere x^2+y^2+z^2-1=0; Advantages: Smooth Can easily to decide one point is in implicit surface or not Topology change freely Disadvantage Hard to render, ray casting is slow 35

Plotting implicit functions Solving method: Polygonization (Marching cubes) 36

2D: Marching Squares 37

2D: Marching Squares 38

2D: Marching Squares 39

2D: Marching Squares x=x i +(a-c) △ x/(a-b) 40

2D: Marching Squares f(x,y)=(x^2+y^2+a^2)^2-4a^2x^2-b^4 a=0.49, b=0.5 41

Sampling on implicit surface 42 f=x^4-10*r^2*x^2+y^4-10*r^2*y^2+z^4-10*r^2*z^2 r=0.13

Sampling on implicit surface 43

Sampling on implicit surface 44

Sampling on implicit surface 45

Shell space triangulation 46

Marching cubes 47