Present status of search for francium EDM Detector Group, CYRIC, Tohoku University Hirokazu Kawamura H.P. Yoshida. CYRIC Tohoku Univ., Univ. of Tokyo,

Slides:



Advertisements
Similar presentations
A proposal for a polarized 3 He ++ ion source with the EBIS ionizer for RHIC. A.Zelenski, J,Alessi, E.Beebe, A.Pikin BNL M.Farkhondeh, W.Franklin, A. Kocoloski,
Advertisements

Ion Sources Some characteristics of ion sources (especially in high precision work): It should have high efficiency in generating ions of the element of.
1 CENTER for EDGE PLASMA SCIENCES C E PS Status of Divertor Plasma Simulator – II (DiPS-II) 2 nd PMIF Workshop Sep. 19, 2011 Julich, Germany H.-J. Woo.
Direct measurement of 4 He( 12 C, 16 O)  reaction near stellar energy Kunihiro FUJITA K. Sagara, T. Teranishi, T. Goto, R. Iwabuchi, S. Matsuda, K. Nakano,
1 Introduction to Plasma Immersion Ion Implantation Technologies Emmanuel Wirth.
Operational aspects 2008 run ISCOOL Isolde workshop Nov 2008 Erwin Siesling.
Mass Spectroscopy Mass Spectrometry ä Most useful tool for molecular structure determination if you can get it into gas phase ä Molecular weight of.
Triangle Universities Nuclear Laboratory July 26, 2001-TUNL REU The Making and Using of Spin-Polarized H  and D  Beams.
Experiments towards the Efficient Trapping of Francium by Seth Aubin Parity Violation in Francium Group Students: Eduardo Gomez Joshua M. Grossman Professors:
Photoelectron Spectroscopy Lecture 7 – instrumental details –Photon sources –Experimental resolution and sensitivity –Electron kinetic energy and resolution.
Thin Film Deposition Prof. Dr. Ir. Djoko Hartanto MSc
On the path to Bose-Einstein condensate (BEC) Basic concepts for achieving temperatures below 1 μK Author: Peter Ferjančič Mentors: Denis Arčon and Peter.
Design on Target and Moderator of X- band Compact Electron Linac Neutron Source for Short Pulsed Neutrons Kazuhiro Tagi.
Mass Spectrometry Brief introduction (part1) I. Sivacekflerovlab.jinr.ru 2012 Student Practice in JINR Fields of Research 1.oct.2012.
Measurement of 4 He( 12 C, 16 O)  reaction in Inverse Kinematics Kunihiro FUJITA K. Sagara, T. Teranishi, M. Iwasaki, D. Kodama, S. Liu, S. Matsuda, T.
TRIµP Laser Spectroscopy: Status and Future U Dammalapati TRI  P Facility Lasers for Na  -decay Ra Spectroscopy & EDM Towards cooling of Heavy Alkaline.
Laser-microwave double resonance method in superfluid helium for the measurement of nuclear moments Takeshi Furukawa Department of Physics, Graduate School.
Correlation Analysis of Electrostatic Fluctuation between Central and End Cells in GAMMA 10 Y. Miyata, M. Yoshikawa, F. Yaguchi, M. Ichimura, T. Murakami.
Radioactive ion beam facilities How does they work ? 2012 Student Practice in JINR Fields of Research 9.oct.2012 I. Sivacekflerovlab.jinr.ru.
High-performance Apparatus for Bose-Einstein Condensation of Rubidium Yoshio Torii Erik Streed Micah Boyd Gretchen Campbell Pavel Gorelik Dominik Schneble.
Development of Tracking Detector with GEM Kunihiro Fujita RCNP, Osaka Univ. Yasuhiro Sakemi CYRIC, Tohoku Univ. Masaharu Nomachi Dep. of Phys., Osaka Univ.
Ultrahigh precision observation of nuclear spin precession and application to EDM measurement T. Inoue, T. Furukawa, H. Hayashi, M. Tsuchiya, T. Nanao,
Simple Atom, Extreme Nucleus: Laser Trapping and Probing of He-8 Zheng-Tian Lu Argonne National Laboratory University of Chicago Funding: DOE, Office of.
Cryogenic ion catchers using superfluid helium and noble gases Sivaji Purushothaman KVI, University of Groningen The Netherlands.
GEM: A new concept for electron amplification in gas detectors Contents 1.Introduction 2.Two-step amplification: MWPC combined with GEM 3.Measurement of.
International Symposium on Heavy Ion Inertial Fusion June 2004 Plasma Physics Laboratory, Princeton University “Stopping.
Polarized Proton Solid Target for RI beam experiments M. Hatano University of Tokyo H. Sakai University of Tokyo T. Uesaka CNS, University of Tokyo S.
24 January 2001J. Lettry1 ISOLDE Introduction –PSB-beam, Targets –Ion-sources Facility performance –Front-ends and robots –Target production –Safety.
Heavy Ion Accelerators for RIKEN RI Beam Factory and Upgrade Plans H. Okuno, et. al. (RIKEN Nishina Center) and P. Ostroumov (ANL) Upgrade Injector Low.
Fundamental Interactions Physics & Instrumentation Conclusions Conveners: P. Mueller, J. Clark G. Savard, N. Scielzo.
14-1 Radiochemistry Techniques in Research Unique Aspects of Radiochemistry Research Availability of Radioactive Material Targetry Measuring Beam Intensity.
Indiana University Cyclotron Facility March, 2004 EIC WorkshopV.P.Derenchuk 1 Polarized Ion Sources V.Derenchuk, Ya.Derbenev, V.Dudnikov Second Electron-Ion.
A new RFQ cooler: concept, simulations and status Trapped Radioactive Isotopes:  icro-laboratories for Fundamental Physics E. Traykov TRI  P project.
Status Report of the LISOL Laser Ion Source Yu.Kudryavtsev, T.Cocolios, M.Facina, J.Gentens, M.Huyse, O.Ivanov, D.Pauwels, M.Sawicka, P.Van den Bergh,
Laser Laboratory (-ies) Peter Müller. 2 Search for EDM of 225 Ra Transverse cooling Oven: 225 Ra (+Ba) Zeeman Slower Optical dipole trap EDM probe Advantages:
Possible measurement of electron EDM in atoms with spatially alternating electric field T. Haseyama RIKEN, Japan ( The Institute of Physical and Chemical.
Review of synthesis of super heavy elements: reactions, decays and characterization. Experimental Setup of MASHA. Results of first experiments. study.
Status of the Photocathode R&D for ATF RFgun N.Terunuma (KEK)
PST05, November 14-17, 2005 at Tokyo 1 Design of a polarized 6 Li 3+ ion source and its feasibility test A. Tamii Research Center for Nuclear Physics,
1 CNS summer school 2002 The RI-Beam Factory and Recent Development in Superheavy Elements Search at RIKEN ◆ Brief introduction to the RI Beam Factory.
Direct measurement of the 4 He( 12 C, 16 O)  cross section near stellar energy Kunihiro FUJITA K. Sagara, T. Teranishi, T. Goto, R. Iwabuchi, S. Matsuda,
Polarized source upgrade RSC, January 11, OPPIS LINAC Booster AGS RHIC ( ) ∙10 11 p/bunch 0.6mA x 300us→11∙10 11 polarized H - /pulse. ( )
The HITRAP Project at GSI For the HITRAP collaboration: Frank Herfurth GSI Darmstadt.
Jerzy Zachorowski M. Smoluchowski Institute of Physics, Jagiellonian University Nonlinear Spectroscopy of Cold Atoms, Preparations for the BEC Experiments.
TRI  P RFQ design, simulations and tests E. Traykov TRI  P project and facility RFQ tests and design Simulations Conclusion TRI  P Group: G.P. Berg,
Antihydrogen Workshop, June , CERN S.N.Gninenko Production of cold positronium S.N. Gninenko INR, Moscow.
Collisional loss rate measurement of Cesium atoms in MOT Speaker : Wang guiping Date : December 25.
Present status of production target and Room design Takashi Hashimoto, IBS/RISP 2015, February.
NATIONAL INSTITUTE OF NUCLEAR PHYSICS Legnaro National Laboratories Numerical simulation strategy for the SPES FEBIAD ion source INFN – CISAS collaboration.
D. Scarpa 1, P. Nicolosi 2,3, A. Franci 2, A. Tomaselli 6, M. Manzolaro 1, S. Corradetti 1,4, J. Vasquez 1,5, M. Rossignoli 1, M. Calderolla 1, A. Monetti.
11/12/20151 Status of high intensity polarized electron gun project at MIT-Bates Evgeni Tsentalovich MIT.
SPES Target Group Data…… INFN-CISAS-CNR collaboration The Ablation Ion Source for refractory metal ion beams A preliminary design.
Precision Tests of Fundamental Interactions with Ion Trap Experiments
DC Sputtering Disadvantage #1 Low secondary electron yield
Development of a Polarized 6Li3+ Ion Source at RCNP
© 1997, Angus Rockett Section I Evaporation.
Old Dominion University, Norfolk, Virginia 23529, USA
DOE Plasma Science Center Control of Plasma Kinetics
PVD & CVD Process Mr. Sonaji V. Gayakwad Asst. professor
FEBIAD ion source development efficiency improvement
Mass Spectroscopy. Mass Spectroscopy Mass Spectrometry Most useful tool for molecular structure determination if you can get it into gas phase Molecular.
Charlie Sinclair Cornell University (ret.)
1.6 Magnetron Sputtering Perpendicular Electric Magnetic Fields.
Angela Gligorova on behalf of the AEgIS and Medipix collaborations
June 9, 2015 Patent applied for.
1. Introduction Secondary Heavy charged particle (fragment) production
A. Tamii Research Center for Nuclear Physics, Osaka University, Japan
Heavy Ion Nuclear Physics Lab. Yukari MATSUO
June 9, 2015 Patent applied for.
Shukui Zhang, Matt Poelker, Marcy Stutzman
Presentation transcript:

Present status of search for francium EDM Detector Group, CYRIC, Tohoku University Hirokazu Kawamura H.P. Yoshida. CYRIC Tohoku Univ., Univ. of Tokyo, Tokyo Univ. Agri. Tech., RCNP Osaka Univ., Kyoto Univ., Tohoku Univ., Tokyo Inst. Tech., Kyusyu Univ., contents  Introduction  CYRIC new ECRIS Swinger magnet  Setup Surface Ionizer Beam Transport Neutralizer Laser trapping  Research Plan K. Hatanaka,A. Hatakeyama,T. Aoki, K. Harada,T. Hayamizu,K. Imai, M. Itoh,H. Kawamura,T. Murakami, A. Oikawa, Y. Sakemi Y. Sakemi,M. Saito, T. Sato,T. Shimizu,M. Uchida, T. Wakasa,

Atomic beam Laser cooled/trapped atom High precision measurement in laser cooled/trapped 210 Fr Heaviest Alkali Atom = 210 Fr : Large Enhancement Factor Cooling & Trapping  Long Coherence Time Precision x 600 ~ Next Generation EDM Search MOT Laser 1 nK 1  K 1 K1 mK1000 K Room temp. Liq 4 He Liq 3 He Laser cooling Evaporation cooling temperature BEC FD Francium: Laser cooling to a few  K and trapping. → Very long interaction time!  Improve measurement precision! 210 Fr 205 Tl 1150 K : Enhancement factor 585 ~10 2 sec  : Coherence time ~10 -3 sec 3.2 min T : Lifetime Stable ~ d e : EDM (e cm) ~ World record E.D. Commins et al, 2002 EDM search ~ Laser trap

High Intensity Laser Cooled Francium Factory at CYRIC 18 O beam Beam Swinger 197 Au target Surface Ionizer 210 Fr + ion Beam Transport/ Diagnosis System Neutralizer 210 Fr atom Zeeman Cooling Magneto-Optical Trap Cooled 210 Fr AVF Cyclotron Primary beam: 100MeV 18 O 5+ Production: 18 O+ 197 Au→ 210 Fr+5n Beam Energy [MeV] [mb] Fr product. cross section 1

New ECR Ion Source 18 O beamNew ECRIS: >2euA (next step), Old ECRIS: 100enA 10 GHz ECRIS 2008/July: Move from RIKEN ~ Request: Heavier Nuclide & Higher Energy 2009/May: Test start 2009/July: First acceleration 2009/July: Shutdown for Renovation /March 2010/June: First Run for Experiment Swinger magnet 2010/May: Swinger 45 deg. 2010/May– Test Run, Performance Check

count 210 Fr (6.543MeV) 206 At (5.703MeV) Measured alpha-ray pectrum Surface Ionizer-I 18 O beam Fr + ion 197 Au target CYRIC group LNL (Italy) 1.4x10 7 atom/s Extraction efficiency Extracted 210 Fr 8x10 6 atom/s Produced 210 Fr in Au target 3x10 6 atom/s 4.1x10 4 atom/s 40% 0.29% Calculation Measurement um thick gold electroplating on Ni-mount Stancari, NIMA594(2008)321

45 deg incident Swinger magnet Surface ionizer Rb beam Fr ion Surface Ionizer-II Stable Rb beam Fr ion Oven (W) 197 Au target (1000 deg C) 1mm thick gold plate Einzel lens Extraction electrode Target rod (W)  18 O beam 45 deg. Incident  Prevent gold from flowing out.  Vertical Fr extraction from Au target  Yield increase.  SiC heater + target cooler  maintain temperature (oven 1500 deg C, target 1000 deg C)  Port for stable Rb beam  Offline test. Aim for:Fr + yield > 10 6 pps, Extraction efficiency > 10% 18 O beam (Ionizer-I: ~0.1%) Production: 18 O+ 197 Au→ 210 Fr+5n

collimate Au target extraction 18 O beam TOSCA Simulation Electric field; Finite Element Method Offline Test Surface ionizer-II Vacuum test Heating test Voltage apply test Rb oven (Rb atom beam source) Rb ion beam first observed at viewer on July 6 Surface Ionizer-II

Fr Beam Transport Ion Optics (UeGios) 1.High Transport Efficiency (~100%) 2.Focused Beam Neutralizer 3.Extreme High Vacuum : Differential Pumping to Torr 4.Beam Diagnosis/Monitor System Requirement Beam line Overview

Deflection electrode Steering Cable port Alignment Laser & Radiation Thermometer Alignment Laser SSD Electrode Under KT Science Ltd. To be installed in August 2010.

Q-electrode After Baking (130V), Simple Vacuum Test  We achieved Torr ! ~ 1 week Electrostatic Quadrupole Triplets TOSCA (FEM) YZ XZ SiO2 duct Reduce outgas from electrodes

Neutralizer  Yttrium catcher  Charge exchange with Alkali vapor  Ion-Electron Recombination 1.Focused beam  high efficiency 2.Low energy  laser cooling 3.Ultrahigh vacuum  laser trapping Y ~ E WF (3.1eV) < E IP (4.1eV) → Fr atom Li + + Na  Li + Na TRIUMF-ISAC Fr + + e -  Fr + hν Fr + ion ~ keVFr atom Laser Focus ~ 700 mm Deceleration  ~ eV Focuse-gun Fr + + Rb  Fr + Rb SUNY Which has a higher neutralization many laboratories! Zeeman slower, MOT chamber.

e-gun type Neutralizer TOSCA (FEM) Rb beam test is currently in progress in Japan! Very low recombination cross section? Need to make energy very low? Offline setup Neutralizer

Laser lab. F=2 F= GHz F=3 F=2 F=1 F=0 267 MHz 157 MHz 72 MHz 5 2 P 3/2 5 2 S 1/2 780 nm Repumping Cooling 87 Rb 795 nm F=13/2 F=11/ GHz F=15/2 F=13/2 F=11/2 F= 9/2 617 MHz 500 MHz 397 MHz 7 2 P 3/2 7 2 S 1/2 718 nm Repumping Cooling F=13/2 F=11/2 7 2 P 1/2 817 nm 210 Fr 6149 MHz Verdi + MBR110(Ti:S Laser) to be installed in July/23 ECLD + Taper amp.  718nm  780nm COHERENT

Laser lab. Optical fiber (150m) MOT Neutron Flight Path  Cooled Francium Beamline  Renovation  Clean room  Design … Zeeman slower, MOT chamber Fr + ion Q-electrode Neutralizer slower Zeeman slower MOT chamber

Research Plan 2010/JulyOnline test -- Surface Ionizer + Beam Transport + Neutralizer 2010 High-intensity Fr-ion beam 2011 High-intensity neutral Fr atom + MOT -- Complete Laser-Cooled Francium Facility 2012 Start EDM measurement 2013 Establish precision EDM measurement -- Aim for World Record d e < e cm Fr + extraction yield: 10 6 cpsFr 0 trap: 10 6 atoms

Experimental setup for surface ionizer-I 197 Au 18 O 5 + Beam 241 Am (for SSD source test) Fr + 460mm Surface ionizer 874mm SSD Triplet-Q electrodeExtraction setup Surface ionizer Beam transport system SSD course-34 Primary beam line SSD: detect alpha particle from Fr on its surface.

Surface ionizer-II / Heating test Cathode Shroud

For Ultrahigh Vacuum of Beam Transport System TMP Pressure [Torr] Surface IonizerNeutralizer Calculation of Vacuum Temperature [deg. C] Q-electrode Heating Test 900mm 400L/s *3

20 Yttrium catcher neutralizer 18 O beam Au target Y target Fr ion Fr atom to Trap Surface IonizerNeutralizer  Target : Gold (Au) ~ E WF (5.1eV)>E IP (4.1eV) → Fr + ion  Target : Yttrium (Y) ~ E WF (3.1eV)<E IP (4.1eV) → Fr atom Y target Fr ion Fr atom Heating (~1000K) Neutralized Fr atom is diffused. 20  Oven (Y) temperature : 1000 K ~ heater temperature for Fr atom release  Capturing velocity of MOT : Vc~1 m/s  Fraction of trapping atoms : ~  High trapping efficiency realization ~ need to cool atoms v Fr ~281 m/s, v rms ~345 m/s v Rb ~333 m/s, v rms ~408 m/s

Ionization/Recombination constant Oxygen Ne Ar Na 1eV1keV 1eV 1keV 1eV 1keV 1eV1keV Ionization Recombination (rare gas) (Alkali metal) Omegatron (user) has succeeded in the neutralization of Ar (O).

10 12 atoms/sec Equivalent energy ~ 20-30eV target Heating holder Atoms soft-landing on target  thin-film produced Ion accel. 1000eV VDS ~80eV anode O2O2 Electron bombard type Discharge chamber Extract. electrode 1 st focus lens2 nd focus lensDecel. lens Neutralizer target Application of deceleration-type slow-neutral beam generator to thin-film (Nitride or Oxidize film) production Valid gas … O, N, Ar and rare gas

Neutralization using Alkali vapor TRIUMF-ISAC Na vapor density ~ atom/cm 2 Neutralization efficiency ~ 95% Vacuum pressure ~ 2x10 -7 Torr (= 3x10 -5 Pa) 8Li energy ~ 30keV SUNY (Sprouse) Rb vapor density ~ 5x10 13 atom/cm 3 Neutralization efficiency >80% 210Fr energy ~ 5keV 5keV | 10keV | 1keV | Rb + energy Fr + -Rb 0eV | Perel,Phys.Rev.138(1965)A937 Cs + -Rb Rb + -Cs Cs + -Cs Rb + -Rb

LD TA EDLDGrating Trap Laser Optical fiber (~150m) Laser cooling MOT Laser Trap Sr cooling/trap system Neutral Fr atom TOF tunnel Laser room : non-radiation controlled area Fr cooling/MOT/ Laser Trap Sr cooling/MOT Laser for RbLaser for FrLaser for Sr Laser transport “Science trap” Next generation EDM search: … Fr-Sr Ultraslow polar molecule at Feshbach resonance