Chapter 19 auxin
Summary: early experiments in auxin research PP5e-Fig-19-01-1.jpg
PP5e-Fig-19-01-2.jpg
PP5e-Fig-19-01-3.jpg
Auxin is transported to lower side of a horizontally oriented oat coleoptile tip PP5e-Fig-19-27-0.jpg Figure 19.27
Lateral redistribution of auxin during phototropism PP5e-Fig-19-26-0.jpg
Auxin stimulates the elongation of oat coleoptile sections PP5e-Fig-19-02-0.jpg
Kinetics of auxin-induced elongation and cell wall acidification in maize coleoptiles PP5e-Fig-19-23-0.jpg Figure 19.23
Figure 19.3 Structure of auxins PP5e-Fig-19-03-0.jpg
Demonstration of polar auxin transport with radiolabelled auxin (B) PP5e-Fig-19-06-2.jpg Figure 19.6
Simplified chemiosmotic model of polar auxin transport PP5e-Fig-19-08-0.jpg
Figure 19.20 Typical dose–response curve for IAA-induced growth PP5e-Fig-19-20-0.jpg
Figure 19.15 Structures of auxin transport inhibitors PP5e-Fig-19-15-0.jpg
Auxin transport inhibitors block secretion of PIN1 to the plasma membrane PP5e-Fig-19-16-0.jpg
In Arabidopsis, two types of transport proteins direct the flow of auxin PP5e-Fig-19-11-2.jpg
Figure 19.32 Current model for redistribution of auxin during gravitropism in maize roots PP5e-Fig-19-32-0.jpg
Figure 19.28 Perception of gravity by statocytes of Arabidopsis PP5e-Fig-19-28-0.jpg
Gravistimulation results in asymmetric auxin accumulation in lateral root cells PP5e-Fig-19-33-0.jpg Figure 19.33
Figure 19.31 Microsurgery experiments showed that the root cap supplies a root growth inhibitor PP5e-Fig-19-31-0.jpg
Figure 19.30 Maize root bending toward a Ca2+-containing agar block PP5e-Fig-19-30-0.jpg
BR2 gene encodes a P-glycoprotein required for normal auxin transport in corn PP5e-Fig-19-13-0.jpg
Figure 19.7 Demonstration of the lack of gravity effects on basipetal auxin transport PP5e-Fig-19-07-0.jpg
The strawberry “fruit” is a swollen receptacle PP5e-Fig-19-37-0.jpg