1 MEG 陽電子タイミングカウンタの ビーム中での性能評価と 解析方法の研究 * 内山雄祐 東大素粒子セ, INFN-Genova A, INFN-Pavia B 森俊則 F. Gatti. A,S.Dussoni A,G.Boca B,P.W.Cattaneo B, 他 MEG Collaboration.

Slides:



Advertisements
Similar presentations
MEG 実験 液体キセノンカロリメータ におけるエネルギー分解能の追究 東大素粒子センター 金子大輔 他 MEG コラボレーション.
Advertisements

Photodetector Timing Resolution Burle Micro-Channel Plate Photo Multiplier Tubes (MCP-PMTs) H. Wells Wulsin SLAC Group B Winter 2005.
Performance of MPPC using laser system Photon sensor KEK Niigata university, ILC calorimeter group Sayaka IBA, Hiroaki ONO, Paul.
MEG実験アップグレードに向けたMPPC読み出しによる 新しいタイミングカウンターの研究開発
1 Analysis of TOF data Yordan Karadzhov St.Kliment Ohridski University of Sofia.
INFN of Genova, Pavia and Roma Flavio Gatti, PSI, February 9 th, Timing Counter status Timing Counter status.
Y. Karadzhov MICE Video Conference Thu April 9 Slide 1 Absolute Time Calibration Method General description of the TOF DAQ setup For the TOF Data Acquisition.
The Design of MINER  A Howard Budd University of Rochester August, 2004.
MEG 実験 陽電子スペクトロメータの 性能と今後の展望 Yuki Fujii On behalf of the MEG collaboration JPS Hirosaki University 17 th Sep /9/17 日本物理学会@弘前大学 1.
Genova/Pavia/Roma Flavio Gatti, PSI, July 1st, Timing Counter july 2004.
MEG II 実験液体キセノンガンマ線検出器 における再構成法の開発 Development of the event reconstruction method for MEG II liquid xenon gamma-ray detector 小川真治、 他 MEG II
Measurement of the absolute efficiency,
The Transverse detector is made of an array of 256 scintillating fibers coupled to Avalanche PhotoDiodes (APD). The small size of the fibers (5X5mm) results.
Malte HildebrandtMEG Review Meeting, 14th February 2007 Report of Run Coordinator Run 2006 Summary Malte Hildebrandt MEG Review Meeting, 14th February.
Mar Toshiyuki Iwamoto (ICEPP) JPS 2010 Spring meeting, Okayama University1 MEG 実験による   e  探索 Run2009 東京大学素粒子物理国際研究センター 岩本敏幸 他 MEG コラボレーション.
PERFORMANCE OF THE MACRO LIMITED STREAMER TUBES IN DRIFT MODE FOR MEASUREMENTS OF MUON ENERGY - Use of the MACRO limited streamer tubes in drift mode -Use.
2 1/March/2015 日本物理学会大70回年次大会@早稲田大学 東大ICEPP 内山雄祐 他 MEG II collaboration.
14/02/2007 Paolo Walter Cattaneo 1 1.Trigger analysis 2.Muon rate 3.Q distribution 4.Baseline 5.Pulse shape 6.Z measurement 7.Att measurement OUTLINE.
Analysis of PSI beam test R.Sawada 09/Feb/2004 MEG collaboration R.Sawada 09/Feb/2004 MEG collaboration
Development of Multi-pixel photon counters(2) M.Taguchi, T.Nakaya, M.Yokoyama, S.Gomi(kyoto) T.Nakadaira, K.Yoshimura(KEK) for KEKDTP photon sensor group.
Feb 10, 2005 S. Kahn -- Pid Detectors in G4MicePage 1 Pid Detector Implementation in G4Mice Steve Kahn Brookhaven National Lab 10 Feb 2005.
MEG positron spectrometer Oleg Kiselev, PSI on behalf of MEG collaboration.
Timing Counter Report of Feb. 14 th, 2007 P.W. Cattaneo.
SiPM を用いたシンチレーションカウンターによる 細分化ポジトロン時間測定器のビーム試験結果 西村美紀 ( 東大 ) 内山雄祐(素セ)、大谷航(素セ)、 M. de Gerone ( Genova Univ. )、 Flavio Gatti(Genova Univ.) 、調翔平(九 大) 他 MEGコラボレーション.
Thomas Jefferson National Accelerator Facility Page 1 EC / PCAL ENERGY CALIBRATION Cole Smith UVA PCAL EC Outline Why 2 calorimeters? Requirements Using.
Setup for hypernuclear gamma-ray spectroscopy at J-PARC K.Shirotori Tohoku Univ. Japan for the Hyperball-J collaboration J-PARC E13 hypernuclear  -ray.
MEG II 実験のための 陽電子タイミングカウンターの開発 PSI でのハイレートビーム試験 Development of Positron Timing Counter with SiPM for MEG-II Experiment Beam Test Result in the high rate.
Julien Bettane, Giulia Hull, Silvia Niccolai, Daria Sokhan 31/1/2012 Status and commissioning plan for the Central Neutron Detector.
Start Counter Collaboration Meeting September 2004 W. Boeglin FIU.
MEG II 実験 液体キセノンガンマ線検出器に用いる 光検出器 MPPC の 実装に向けた最終試験 家城 佳 他 MEG II collaboration + 九大の方々.
MEG 2009 現状と展望 東京大学素粒子物理国際研究センター 岩本敏幸 他 MEG コラボレーション 日本物理学会 2009 年秋季大会 甲南大学岡本キャンパス.
Timing Counter Report of Feb 20th, 2008 F.Gatti. Final Construction Phase of TC TC with fibers exposed TC upside down for Fiber APD gluing High reflectance.
Development of Multi-pixel photon counters(2) M.Taguchi, T.Nakaya, M.Yokoyama, S.Gomi(kyoto) T.Nakadaira, K.Yoshimura(KEK)
MEG 実験用液体キセノン検出器の現状 東京大学素粒子物理国際研究センター 澤田龍 他 MEG カロリメータグループ 2007 年 9 月 24 日 日本物理学会 第 62 回年次大会 北海道大学.
The DRS2 Chip: A 4.5 GHz Waveform Digitizing Chip for the MEG Experiment Stefan Ritt Paul Scherrer Institute, Switzerland.
Lead Fluoride Calorimeter for Deeply Virtual Compton Scattering in Hall A Alexandre Camsonne Hall A Jefferson Laboratory October 31 st 2008.
Liquid Xenon Calorimeter Analysis R.Sawada on behalf of the MEG LXe analysis group 17/Feb/2009.
MEG II 実験のための 陽電子タイミングカウンター実機建設 Construction of Positron Timing Counter for MEG II experiment 西村美紀(東大) 他 MEGIIコラボレーション 日本物理学会 2015年 秋季大会 大阪市立大学(杉本キャンパス)
Shashlyk FE-DAQ requirements Pavel Semenov IHEP, Protvino on behalf of the IHEP PANDA group PANDA FE-DAQ workshop, Bodenmais April 2009.
MEG Run 2008 液体キセノンガンマ線検出器 東京大学 素粒子物理国際研究セン ター 西村 康宏、 他 MEG コラボレー ション 2008 年秋季物理学会@山形大学小白川キャンパス.
08-June-2006 / Mayda M. VelascoCALOR Chicago1 Initial Calibration for the CMS Hadronic Calorimeter Barrel Mayda M. Velasco Northwestern University.
Test beam preliminary results D. Di Filippo, P. Massarotti, T. Spadaro.
東大素粒子セ, PSI A, UCI B, ETH C 岩本敏幸 A, 内山雄祐, 大谷航, 小曽根健嗣 A, 澤田龍, 名取寛顕, 西口創, 久松康子, 三原智, 森俊則, 山田秀衛 B, M.Schneebeli C, S.Ritt A 内山 雄祐 日本物理学会2006年年次大会 @愛媛大・松山大.
FSC Status and Plans Pavel Semenov IHEP, Protvino on behalf of the IHEP PANDA group PANDA Russia workshop, ITEP 27 April 2010.
MEG 実験 背景ガンマ線の研究 澤田 龍 MEG コラボーレーション 東京大学素粒子物理国際研究センター 2010 年 9 月 11 日 日本物理学会 2010 年秋季大会 九州工業大学戸畑キャンパス.
5-9 June 2006Erika Garutti - CALOR CALICE scintillator HCAL commissioning experience and test beam program Erika Garutti On behalf of the CALICE.
1 Electronics Status Trigger and DAQ run successfully in RUN2006 for the first time Trigger communication to DRS boards via trigger bus Trigger firmware.
Time and amplitude calibration of the Baikal-GVD neutrino telescope Vladimir Aynutdinov, Bair Shaybonov for Baikal collaboration S Vladimir Aynutdinov,
Genova/Pavia/Roma Flavio Gatti, PSI, 11 February, Timing Counter: january 2004.
SPring-8 レーザー電子光 ビームラインでの タギング検出器の性能評価 核物理研究センター 三部 勉 LEPS collaboration 日本物理学会 近畿大学 1.レーザー電子光 2.タギング検出器 3.実験セットアップ 4.エネルギー分解能 5.検出効率とバックグラウンドレート.
The Lead Glass Detector Overview, Experience and Direction.
MEG 実験 2009 液体キセノン検出器の性能 II 西村康宏, 他 MEG コラボレーション 東京大学素粒子物理国際研究セン ター 第 65 回年次大会 岡山大学.
A Brand new neutrino detector 「 SciBar 」 (2) Y. Takubo (Osaka) - Readout Electronics - Introduction Readout electronics Cosmic ray trigger modules Conclusion.
A. Tsirigotis Hellenic Open University N eutrino E xtended S ubmarine T elescope with O ceanographic R esearch Reconstruction, Background Rejection Tools.
Upgrade of the MEG liquid xenon calorimeter with VUV-light sensitive large area SiPMs Kei Ieki for the MEG-II collaboration 1 II.
Development of Multi-pixel photon counters(2) M.Taguchi, T.Nakaya, M.Yokoyama, S.Gomi(kyoto) T.Nakadaira, K.Yoshimura(KEK) for KEKDTP photon sensor group.
3/06/06 CALOR 06Alexandre Zabi - Imperial College1 CMS ECAL Performance: Test Beam Results Alexandre Zabi on behalf of the CMS ECAL Group CMS ECAL.
1 Methods of PSD energy calibration. 2 Dependence of energy resolution on many factors Constant term is essential only for energy measurement of single.
小川真治、 他MEG 第72回年次大会 MEG II 実験液体キセノンガンマ線検出器における取得データサイズ削減手法の開発 Development of the data size reduction method for MEG II liquid.
Fabio, Francesco, Francesco and Nicola INFN and University Bari
Timing Counter: progress report
A First Look J. Pilcher 12-Mar-2004
Upgrade of LXe gamma-ray detector in MEG experiment
Timing Counter Sept CSN I, Assisi 2004 Giorgio Cecchet.
Upgrade of LXe gamma-ray detector in MEG experiment
MEG実験の液体Xe検出器について 東大 ICEPP  森研究室 M1 金子大輔.
Stefan Ritt Paul Scherrer Institute, Switzerland
Timing Counter analysis
MEG II実験 液体キセノン検出器の建設状況
西村美紀(東大) 他 MEGIIコラボレーション 日本物理学会 第73回年次大会(2018年) 東京理科大学(野田キャンパス)
Presentation transcript:

1 MEG 陽電子タイミングカウンタの ビーム中での性能評価と 解析方法の研究 * 内山雄祐 東大素粒子セ, INFN-Genova A, INFN-Pavia B 森俊則 F. Gatti. A,S.Dussoni A,G.Boca B,P.W.Cattaneo B, 他 MEG Collaboration 日本物理学会 2007 年年次大会 @首都大学 2007 年 3 月 26 日

2 Detector COBRA spectrometer Liquid Xe photon detector Target Drift chamber Timing counter COBRA magnet e +

3 Timing Counter ● Provide fast signal for low level trigger  High timing resolution (~ns)  Direction of e + emission  High efficiency (>90%) ● Precise determination of e+ kinematics  Impact point for track reconstruction  High timing resolution for e + -  coincidence (100ps FWHM) Two layers of scintillator hodoscope  Orthogonally placed along phi and z direction Requirements z phi

4 Transverse Counter (Z measuring scintillating fibre) scintillating fibre SAINT-GOBAIN BCF-20 APDs & frontend card HAMAMATSU ● Hit pattern for trigger ● Precise measurement of impact point ● Not measure timing ● High granularity for precise impact position ● Perpendicular to the magnetic field  Layer of scintillating fibres (5x5mm2)  Read out by APDs (512ch)

5 Longitudinal Counter (Phi measuring scintillator bar ) ● For the timing measurement ● 15 bars, almost square: 40x40mm2 x 80cm length ● Read out by 2” fine-mesh PMTs ( HAMAMATSU R5924) ● Record waveforms at 2GHz sampling ● Main concept ;  timing on the 'first photon'  homogeneous e + track BICRON BC404

6 Optimization of the design ● 20°rotation increase response uniformity ● Positron path-length(5cm) enough for the required timing Res. ● Maximal matching scintillator-PMT ● Optimal compromise between PMT field gain suppression factor and available space. PMT tilted ~20° respect to the mag. Scintillator cross section PMT active diameter: 39mm 19º 22º From COBRA center 105 cm25 cm B B 0.75 T 1.05 T Sectional view Long. view PMT outer diameter: 52mm guided by MC study & several beam tests

7 Frontend electronics ● Double Threshold Discriminator  Allow to pickoff timing at 1p.e. level  Minimize time-walk effect ● Only use waveform digitizer, no ADC, TDC.  DRS : digitizer developed for  Sample at 2 GHz ● Record 2 signals  Direct signal of PMT output  NIM signal from the discriminator PMT DRS Discr. card DRS S S trigger monitor S 8 1 1

8 Commissioning run 2006

9 Setup ● Only the bar counters (w/o z measuring fibres) ● Not the final electronics (w/o discri. card)  Acquired PMT direct signal (0.5GHz & 2GHz)  Some channel of final electronics were tested ● Cosmic rays w/ and w/o magnetic field ● e + from muon decay  low ~ full beam intensity ● TC self triggering  uniform in z direction

10 Installation ● December 2006 Z measuring fibre counters were not installed PMTs N 2 bag N 2 flushing tubes

11 Event ● Typical event of e + from target ● e + goes through a few bars z phi Online event display

12 Event ● Typical event of e + from target ● e + goes through a few bars z phi Online event display

13 Waveform data ● PMT signals were obtained by waveform digitizer  2GHz sampling  sampled after attenuation factor 10  low noise level S/N ~ 200 (0.3 mV RMS)  stable baseline  cross-talk ● 5% at maximum ● mainly in DRS chip Attenuated by factor ps interva l

14 Waveform data Attenuated by factor ps interva l ● PMT signals were obtained by waveform digitizer  2GHz sampling  sampled after attenuation factor 10  low noise level S/N ~ 200 (0.3 mV RMS)  stable baseline  cross-talk ● 5% at maximum ● mainly in DRS chip

15 stable baseline, low noise level and cross-talk reduction subtract noise (0 ~ 200ns) Noise reduction Waveform data enable us to improve data quality offline

16 Event distributions  Z reconstruction by time difference  rough calibrations ● time pedestal ● attenuation length ● effective light velocity ● relative gain correction bad channel to the test DAQ  beam 9MeV Charge ratio vs time diff.Eloss att. length ~110 cm COBRA magnet & Timing Counter are working properly

17 Time pickoff method 1 ● Constant fraction method  timing at constant fraction of peak height  no dependence on pulse height  fast and assured way  tried different algorithms  linear or cubic interpolation  Fast and sure way – for online conventional CF (ARC method) digital CF Linear Cubic ARC dCF

18 Time pickoff method 2 ● Fitting with template waveform  template by average waveform  template for each channel  good performance  additional information average waveform for template  /NDF distribution indicate multi hits, pile-up

19 Timing resolution ● Estimate timing resolution by time difference between hits on adjacent bars  Hit time by average of 2 PMTs t hit = (t in + t out )/2  Template fitting is a bit better than CF  Event selection ● hits on adjacent bars ● energy loss > 6 MeV for both bars ● z difference 1~6.5 cm ●  NDF of template fitting < 3 1 bar resolution 176 ps FWHM Time fluctuation from variation of e + trajectory ~30 psec T bar2 – T bar1 [nsec]

20 Possible improvements ● Final electronics  Discriminator output ● Improvement of S/N (factor 10) ● First photon timing ● precise and independent determination of impact position  Z counter  Z counter + track ● Reduce cross-talk  cabling and channel assignment ● Improvement of the digitizer : DRS 3 from next year run  high linearity  large dynamic range  low cross-talk  low sampling time jitter Several beam tests confirmed the intrinsic time resolution <100ps

21 Summary ● Timing counter optimized for MEG were completed.  Now fibre counters are also ready ● Commissioning run was done with Phi counter ● COBRA e + spectrometer worked fine. ● Waveform data of PMT output were obtained  studied waveform analysis ● Worse timing resolution than required  Previous beam test confirm the required resolution  The cause to be understood  We can expect several improvement for the final setup.

22 End of slides

23 Beam test results  T ~ 90psec ● MEG TC 4x4x80 BC404 R Table form E.Nappi / Bari

24 Baseline & noise analysis : Coherent Noise ● If noise consists of coherent component, subtracting no signal channel from signal channel can reduce the noise. ● It requires the efficient and safe algorithm to distinguish noise and siganl. Noise Level 0.5 -> 0.32mV Baseline Fluctuation 0.27-> 0.07mV ex.) Using channels in one DRS chip Make coherent noise by averaging no signal channel (ch 0, 1, 2, 3) Subtract the noise from all channels ch 0ch 1 ch 2 ch 4 ch 6 ch 7 ch 5 ch 3

25 Double hits ● some e+ hit same bar twice ● faile z reconstruction ● worse time resolution ● large Chi2/NDF r each after a few ns delay r each earlier than 1 st hit