STRING COLOR FIELDS PREDICTIONS for pp at LHC C.Pajares University Santiago de Compostela Quantum Field Theory in Extreme Environments,Paris April 2009.

Slides:



Advertisements
Similar presentations
Quarkonia: theoretical overview Marzia Nardi INFN Torino III Convegno Nazionale sulla Fisica di ALICE Frascati, Novembre 2007.
Advertisements

Eccentricity and v2 in proton-proton collisions at the LHC
Mass, Quark-number, Energy Dependence of v 2 and v 4 in Relativistic Nucleus- Nucleus Collisions Yan Lu University of Science and Technology of China Many.
Yoshitaka Hatta (U. Tsukuba) Eccentricity and v2 in proton-proton collisions at the LHC in collaboration with E. Avsar, C. Flensburg, J.-Y. Ollitrault,
Elliptic flow of thermal photons in Au+Au collisions at 200GeV QNP2009 Beijing, Sep , 2009 F.M. Liu Central China Normal University, China T. Hirano.
Equation of State in the framework of percolation C. Pajares. Univ. Santiago de Compostela In collaboration with J. Dias de Deus, B. Srivastava, A. Hirsch,
Physics Results of the NA49 exp. on Nucleus – Nucleus Collisions at SPS Energies P. Christakoglou, A. Petridis, M. Vassiliou Athens University HEP2006,
Direct Photon Production in pp collisions at the LHC Théorie LHC France 06 April 2010 IPN Lyon F.M. Liu IOPP/CCNU, Wuhan, China K. Werner Subatech, Nantes,
The Color Glass Condensate and RHIC Phenomenology Outstanding questions: What is the high energy limit of QCD? How do gluons and quarks arise in hadrons?
References to Study the New Matter. Study QGP in different Centrality Most Central events (highest multiplicity), e.g. top 5% central, i.e. 5% of the.
Forward-Backward Correlations in Relativistic Heavy Ion Collisions Aaron Swindell, Morehouse College REU 2006: Cyclotron Institute, Texas A&M University.
Julia VelkovskaMoriond QCD, March 27, 2015 Geometry and Collective Behavior in Small Systems from PHENIX Julia Velkovska for the PHENIX Collaboration Moriond.
ICPAQGP, Kolkata, February 2-6, 2015 Itzhak Tserruya PHENIX highlights.
Multiplicity Distributions and Percolation of Strings J. Dias de Deus and C. Pajares CENTRA,Instituto Superior Tecnico,Lisboa IGFAE,Universidade de Santiago.
1 D. Kharzeev Nuclear Theory BNL Alice Club, CERN TH, May 14, 2007 Non-linear evolution in QCD and hadron multiplicity predictions for the LHC.
Forward-Backward Correlations in Heavy Ion Collisions Aaron Swindell, Morehouse College REU Cyclotron 2006, Texas A&M University Advisor: Dr. Che-Ming.
Terence Tarnowsky Long-Range Multiplicity Correlations in Au+Au at Terence J Tarnowsky Purdue University for the STAR Collaboration 22nd Winter Workshop.
Resolution of Several Puzzles at Intermediate p T and Recent Developments in Correlation Rudolph C. Hwa University of Oregon Quark Matter 05 Budapest,
Experimental Results for Fluctuations And Correlations as a Signature of QCD Phase Transitions in Heavy Ion Collisions Gary Westfall Michigan State University,
Percolation & The Phase Transition 1 Bring your own Phase Diagram TIFR, Mumbai, India Dec , 2010 Brijesh K Srivastava Department of Physics West.
Direct photon production in pp and AA collisions 合肥, Dec 5 - 7, 2009 刘复明 华中师范大学粒子物理研究所 FML, T.Hirano, K.Werner, Y. Zhu, Phys.Rev.C79:014905,2009. FML,
Materia a alta densidad (de SPS y RHIC a LHC) Carlos Pajares Universidade de Santiago de Compostela Multiplicity Parton Saturation Elliptic Flow. sQGP,
Current status of the long- range correlations analysis in Be+Be at 150 AGeV/c E. Andronov, A. Seryakov NA61/NA49 Collaboration meeting Dubna, 10/04/14.
Cold nuclear matter effects on dilepton and photon production Zhong-Bo Kang Los Alamos National Laboratory Thermal Radiation Workshop RBRC, Brookhaven.
8/6/2005Tomoaki Nakamura - Hiroshima Univ.1 Tomoaki Nakamura for the PHENIX collaboration Hiroshima University Measurement of event-by-event fluctuations.
New States of Matter and RHIC Outstanding questions about strongly interacting matter: How does matter behave at very high temperature and/or density?
Rapidity correlations in the CGC N. Armesto ECT* Workshop on High Energy QCD: from RHIC to LHC Trento, January 9th 2007 Néstor Armesto Departamento de.
As one evolves the gluon density, the density of gluons becomes large: Gluons are described by a stochastic ensemble of classical fields, and JKMMW argue.
Tomoaki Nakamura - Hiroshima Univ.16/21/2005 Event-by-Event Fluctuations from PHENIX Tomoaki Nakamura for the PHENIX collaboration Hiroshima University.
Flow fluctuation and event plane correlation from E-by-E Hydrodynamics and Transport Model LongGang Pang 1, Victor Roy 1,, Guang-You Qin 1, & Xin-Nian.
The Color Glass Condensate Outstanding questions: What is the high energy limit of QCD? How do gluons and quarks arise in hadrons? What are the possible.
STRING PERCOLATION AND THE GLASMA C.Pajares Dept Particle Physics and IGFAE University Santiago de Compostela CERN The first heavy ion collisions at the.
Workshop for Particle Correlations and Femtoscopy 2011
LONG RANGE CORRELATIONS;EVENT SIMULATION AND PARTON PERCOLATION C.Pajares Dept Particle Physics and IGFAE University Santiago de Compostela,Spain BNL Glasma.
Long Range Correlations,Parton Percolation and Color Glass Condensate C.Pajares Dept Particle Physics and IGFAE University Santiago de Compostela,Spain.
The CGC and Glasma: Summary Comments The CGC, Shadowing and Scattering from the CGC Inclusive single particle production J/Psi Two Particle Correlations.
Future Perspectives on Theory at RBRC Color Glass Condensate: predictions for: "ridge", elliptical flow.... Quark-Gluon Plasma: fluctuations, effects of.
The quest for the holy Grail: from Glasma to Plasma Raju Venugopalan CATHIE-TECHQM workshop, Dec , 2009 Color Glass Condensates Initial Singularity.
Flow fluctuation and event plane correlation from E-by-E Hydrodynamics and Transport Model Victor Roy Central China Normal University, Wuhan, China Collaborators.
Round Table Workshop on NICA Physics Dubna,September 9-12,20091 J/Ψ Production in Heavy Ion Collisions J/Ψ Production in Heavy Ion Collisions Pengfei ZHUANG.
Robert Pak (BNL) 2012 RHIC & AGS Annual Users' Meeting 0 Energy Ro Robert Pak for PHENIX Collaboration.
System-size dependence of strangeness production, canonical strangeness suppression, and percolation Claudia Höhne, GSI Darmstadt.
Heavy-Ion Physics - Hydrodynamic Approach Introduction Hydrodynamic aspect Observables explained Recombination model Summary 전남대 이강석 HIM
The Color Glass Condensate and Glasma What is the high energy limit of QCD? What are the possible form of high energy density matter? How do quarks and.
1 Charged hadron production at large transverse momentum in d+Au and Au+Au collisions at  s=200 GeV Abstract. The suppression of hadron yields with high.
QM2008 Jaipur, India Feb.4– Feb. 10, STAR's Measurement of Long-range Forward- backward Multiplicity Correlations as the Signature of “Dense Partonic.
Nuclear Size Fluctuations in Nuclear Collisions V.Uzhinsky, A.Galoyan The first RHIC result – Large elliptic flow of particles.
Energy and  B dependence in heavy ion collisions D. Kharzeev BNL “From high  B to high energy”, BNL, June 5, 2006.
Implications for LHC pA Run from RHIC Results CGC Glasma Initial Singularity Thermalized sQGP Hadron Gas sQGP Asymptotic.
News from quarkonia Rencontres QGP Etretat 16/9/2014 Elena G. Ferreiro Universidad de Santiago de Compostela Spain.
QGP-Meet’06, VECC, Kolkata. 6 th Feb-2006 RAGHUNATH SAHOO, INSTITUTE OF PHYSICS, BHUBANESWAR TRANSVERSE ENERGY PRODUCTION AT RHIC OUTLINE: Introduction.
Viscous Hydrodynamic Evolution for the CGC at RHIC and LHC Akihiko Monnai Department of Physics, The University of Tokyo Collaborator: Tetsufumi Hirano.
Theory at the RIKEN/BNL Research Center initial state "Glasma" "Quark-Gluon Plasma" hadrons Cartoon of heavy ion collisions at high energy: (Now: RHIC.
Helen Caines Yale University Strasbourg - May 2006 Strangeness and entropy.
Heavy Flavor Measurements at RHIC&LHC W. Xie (Purdue University, West Lafayette) W. Xie (Purdue University, West Lafayette) Open Heavy Flavor Workshop.
Universal geometrical scaling in pp,pA,AA collisions and saturation of gluons C.Pajares Dep Física Partículas & IGFAE Universidad Santiago de Compostela.
1 Brijesh K Srivastava Department of Physics & Astronomy Purdue University, USA in collaboration with A. S. Hirsch & R. P. Scharenberg ( Purdue University)
ICPAQGP 2010 Goa, Dec. 6-10, Percolation & Deconfinement Brijesh K Srivastava Department of Physics Purdue University USA.
Department of Physics & Astronomy
PHENIX Measurements of Azimuthal Anisotropy at RHIC
PREDICTIONS for the HIGH DENSITY PROGRAMME at the LHC
Onset of some critical phenomena in AA collisions at SPS energies
De-Confinement and the Clustering of
Strong color fields in AA and pp high multiplicity events
Anisotropic flow at RHIC - selected topics
Single Diffractive Higgs Production at the LHC *
Heavy Ion Physics at NICA Simulations G. Musulmanbekov, V
INTRODUCTION TO HIGH DENSITY QCD
One PeV Collisions Very successful Heavy Ion run in 2015, with all new detectors in operation 16 GB/s readout/ 6GB/s on disk after HLT compression.
Presentation transcript:

STRING COLOR FIELDS PREDICTIONS for pp at LHC C.Pajares University Santiago de Compostela Quantum Field Theory in Extreme Environments,Paris April 2009 Feliz Cumpleaños Jean Paul&Larry

Clustering of color sources Multiplicity distributions pp and Pb Pb scales Supression of pt Elliptic flow in pp Rapidity long range correlations Conclusions

Color strings are stretched between the projectile and target Strings = Particle sources: particles are created via sea qq production in the field of the string Color strings = Small areas in the transverse space filled with color field created by the colliding partons With growing energy and/or atomic number of colliding particles, the number of sources grows So the elementary color sources start to overlap, forming clusters, very much like disk in the 2-dimensional percolation theory In particular, at a certain critical density, a macroscopic cluster appears, which marks the percolation phase transition CLUSTERING OF COLOR SOURCES

(N. Armesto et al., PRL77 (96); J.Dias de Deus et al., PLB491 (00); M. Nardi and H. Satz(98). How?: Strings fuse forming clusters. At a certain critical density η c (central PbPb at SPS, central AgAg at RHIC, central pp at LHC ) a macroscopic cluster appears which marks the percolation phase transition (second order, non thermal). Hypothesis: clusters of overlapping strings are the sources of particle production, and central multiplicities and transverse momentum distributions are little affected by rescattering.

Energy-momentum of the cluster is the sum of the energy-momemtum of each string. As the individual color field of the individual string may be oriented in an arbitrary manner respective to one another,

Elliptic Flow

A measurement of such correlations is the backward–forward dispersion D 2 FB = - where n B (n F ) is the number of particles in a backward (forward) rapidity number of collisions:, F and B multiplicities in one collision In a superposition of independent sources model, is proportional to the fluctuations on the number of independent sources (It is assumed that Forward and backward are defined in such a way that there is a rapidity window to eliminate short range correlations). BF LONG RANGE CORRELATIONS

with b in pp increases with energy. In hA increases with A also in AA,increases with centrality The dependence of b with rapidity gap is quite interesting, remaining flat for large values of the rapidity window. Existence of long rapidity correlations at high density

1/K is the squared normalized fluctuations on effective number of strings(clusters)contributing to both forward and backward intervals The heigth of the ridge structure is proportional to n/k Similar results to CGC.Qs is related to our F(eta)

b at LHC is in the range (we have uncertainties on k)

Color Glass Condensate; Clustering Color Sources

FRACTION of OCCUPIED AREA x EFFECTIVE NUMBER OF CLUSTERS LONGITUDINALY EXTENDED COLOR FIELDS MULTIPLICITY NUMBER OF GLUONS x NUMBER of COLOR FLUX TUBE

Conclusions For pp at LHC are predicted the same phenomena observed at RHIC in Au-Au Reduction of multiplicities High pt supression Sizable elliptic flow Long range correlations extended more than 10 units of rapidity.Ridge structure