Cascaded Solid Spaced Filters for DWDM applications J. Floriot, F. Lemarchand, M. Lequime
Narrow Bandpass filters: Requirements Transmittance Example: 50GHz Dl -0.5db > 0.22nm Dl -3db < 0.3nm Dl -20db < 0.6nm l sharpness -0.5 dB -3 dB Steepness / shape factor -20 dB Isolation band 1528-1568nm
Narrowing the bandwidth Fabry Perot Cavities Spacer layer Incident Light T() R() substrate Mirror Mirror Narrowing the bandwidth Higher Spacer thickness Or Better mirror reflectance
Single FP cavities 35 layers – 17 layer mirrors – 2.12µm spacer nL = 1.46 / nH = 2.09 35 layers – 17 layer mirrors – 2.12µm spacer 27 layers – 13 layer mirrors – 11.68µm spacer 15 layers – 7 layers mirrors – 107.22µm spacer
Dielectric mirrors 5 to 7 layers Solid Spaced Filters Dielectric mirrors 5 to 7 layers T() FSR Wafer thickness Transparent wafer 50 -150µm thick Low Absorption, low scattering Level, few sensitive to deposition errors
Cascaded Solid Spaced Filters air gap T()
Experimental Demonstration: 2 fused silica wafers < 3 arc-second < 3 arc-second 108.7µm 146.0µm 1.443 Refractive index @ 0 1.443 0 = 1560.86 nm 402L 540L Both Sides Coated : 5 layer Ta2O5 / SiO2 IAD mirrors
lightpathTM collimators Measurement set-up tunable laser source InGaAs Photodiode + amplifier+ DAC lightpathTM collimators 1520 – 1570 nm = 10 pm w0 = 250µm
-3db = 0.79nm Tmax = 99.9% -3db =0.55 Tmax = 98.9% Residual Transmission Level = -16dB
-3db =0.47 Tmax = 98.1%
Triple Cavity Filters how extending the rejection band ?
Use of a blocking filter BW1 BW2 >>BW1
Cavities with different FSR
Different Phase Dependence Mirrors RM1() RM2 () But M1 () ≠ M2 () FSR1 ≠ FSR2
Conclusion ? Vs Number of layers low high errors sensitivity low high Absorption, scattering Rejection Band low high low high reduced broad Compactness Optical contacting