Cosmo02, Chicago 18-21 september 2002 Maryvonne De Jésus 1 DARK-MATTER Direct Detection Maryvonne De Jésus IPN-Lyon/CNRS France

Slides:



Advertisements
Similar presentations
MACHe3: Prototype of a bolometric detector based on superfluid 3 He for the search of non-baryonic Dark Matter C. Winkelmann J. Elbs E. Collin Yu. Bunkov.
Advertisements

EDELWEISS-I last results EDELWEISS-II prospects for dark matter direct detection CEA-Saclay DAPNIA and DRECAM CRTBT Grenoble CSNSM Orsay IAP Paris IPN.
The PICASSO experiment - searching for cold dark matter
Possible merits of high pressure Xe gas for dark matter detection C J Martoff (Temple) & P F Smith (RAL, Temple) most dark matter experiments use cryogenic.
Dark Matter Overview Harry Nelson UCSB INPAC Oct. 4, 2003.
Experimental dark matter searches
Jason Koglin – KAVLI Symposium – Dec 11, Indirect Dark Matter Search with Antideuterons: Progress and Future Prospects for General Antiparticle Spectrometer.
Searches for Dark Matter (the Quest) Harry Nelson UCSB 2003 SLAC Summer Insitute Aug
12/9/04KICP - Spin Dependent Limits 1 Can WIMP Spin Dependent Couplings explain DAMA? Limits from DAMA and Other Experiments Christopher M. Savage University.
What’s the Matter in the Universe? Richard Schnee Syracuse University Quarknet Lecture July 13, 2012 The Search for Dark Matter.
1 Searching For Dark Matter in the Universe: Direct (indirect) methods for the detection of Weakly Interacting Massive Particles (WIMPs) Nader Mirabolfathi.
July 2001 Neil Spooner WIMP LIMITS Update on WIMP Direct and Indirect Searches Neil Spooner, University of Sheffield Direct Results Towards 1 Ton and why.
Dark Matter Facts Baryonic Matter is only 20% of the Universe 80% is Dark Matter Dark Matter doesn’t interact with light or ordinary matter very frequently.
A Direction Sensitive Dark Matter Detector
Dan Bauer Fermilab Users Meeting June 3, 2004 Status of Cold Dark Matter Searches Dan Bauer, Fermilab Introduction Scientific case compelling for cold.
Dark Matter G. Chardin CEA/Saclay, DAPNIA. Motivations for non-baryonic Dark Matter Search - 1 Astrophysical measurements –“Dark” matter halo around the.
CRESST Cryogenic Rare Event Search with Superconducting Thermometers Max-Planck-Institut für Physik University of Oxford Technische Universität München.
TAUP2007, Sendai, 12/09/2007 Vitaly Kudryavtsev 1 Limits on WIMP nuclear recoils from ZEPLIN-II data Vitaly A. Kudryavtsev Department of Physics and Astronomy.
Annual Modulation Study of Dark Matter Using CsI(Tl) Crystals In KIMS Experiment J.H. Choi (Seoul National University) SUSY2012, Beijing.
Applications of Micro-TPC to Dark Matter Search 1. WIMP signatures 2. Performance of the Micro-TPC 3. WIMP-wind measurement 4. Future works 5. Conclusions.
Direct Dark Matter Searches
 Dark matter forms a giant sea, enclosing the milky way. The earth and solar system like a small fish, swimming in it.  Dark Matter particle has a small.
Cryogenic particle detection at the Canfranc Underground Laboratory First International Workshop for the Design of the ANDES Underground Laboratory Centro.
Henrique Araújo Imperial College London IOP2010 – JOINT HEPP/APP GROUP MEETING March 2010, University College London.
Gaitskell Majorana - DM Summary of Issues Rick Gaitskell Brown University, Department of Physics see information at v8.
Gaitskell Towards One Tonne WIMP Direct Detectors: Have we got what it takes? (CryoArray) Rick Gaitskell Department of Physics & Astronomy University College.
CDMS IIUCSB Direct Dark Matter Detection CDMS, ZEPLIN, DRIFT (Edelweiss) ICHEP 31 Amsterdam July 26, 2002 Harry Nelson Santa Barbara.
Dark Matter Search with SuperCDMS Results, Status and Future Wolfgang Rau Queen’s University.
SuperCDMS From Soudan to SNOLAB Wolfgang Rau Queen’s University.
The Recent Status of KIMS Group and New Plan Li Xin (Tsinghua University) KIMS collaboration Aug. 28th, 2006.
Future work Kamioka Kyoto We feel WIMP wind oh the earth NEWAGE ~ Direction Sensitive Direct Dark Matter Search ~ Kyoto University Hironobu Nishimura
A Study of Background Particles for the Implementation of a Neutron Veto into SuperCDMS Johanna-Laina Fischer 1, Dr. Lauren Hsu 2 1 Physics and Space Sciences.
HEP-Aachen/16-24 July 2003 L.Chabert IPNL Latest results ot the EDELWEISS experiment : L.Chabert Institut de Physique Nucléaire de Lyon ● CEA-Saclay DAPNIA/DRECAM.
The Tokyo Dark Matter Experiment NDM03 13 Jun. 2003, Nara Hiroyuki Sekiya University of Tokyo.
Underground Laboratories and Low Background Experiments Pia Loaiza Laboratoire Souterrain de Modane Bordeaux, March 16 th, 2006.
A Lightning Review of Dark Matter R.L. Cooper
Henrique Araújo Imperial College London IOP2011 NPPD CONFERENCE 3-7 April 2011, University of Glasgow.
DARK MATTER & GALACTIC ROTATION 2012 ASTRO SUMMER SCHOOL.
The EDELWEISS-II experiment Silvia SCORZA Université Claude Bernard- Institut de Physique nucléaire de Lyon CEA-Saclay DAPNIA/DRECAM (FRANCE), CNRS/CRTBT.
Véronique SANGLARD Université de Lyon, UCBL1 CNRS/IN2P3/IPNLyon Status of EDELWEISS-II.
KPS Chonbuk University 2005/10/22 HYUNSU LEE Status of the KIMS dark matter search experiment with CsI(Tl) crystals Hyun Su Lee Seoul National.
DARK MATTER IN THE UNIVERSE? PRESENTED BY L. KULL AT THE R.H.FLEET SCIENCE CENTER December 14,2005.
Physics at Extreme Energies, Hanoi, July 2000 Dark Matter Search in the EDELWEISS expt G. Chardin DAPNIA/SPP, CEA-Saclay.
Dark Matter Search with Direction Sensitive Scintillators The10th ICEPP Symposium February 16, 2004, Hakuba H. Sekiya University of Tokyo.
Vergados DSU11 29/09/11 Direct Dark Matter Searches- Exploiting its Various Signatures J.D. Vergados J.D. Vergados University of Ioannina, Ioannina, Greece.
WIMP search Result from KIMS experiments Kim Seung Cheon (DMRC,SNU)
? At Yangyang beach, looking for something in the swamp of particles and waves. 1 The recent results from KIMS Seung Cheon Kim (Seoul National University)
ZEPLIN I: First limits on nuclear recoil events Vitaly A. Kudryavtsev Department of Physics and Astronomy University of Sheffield, UK For the UK Dark Matter.
Kamioka Kyoto We feel WIMP wind on the earth NEWAGE Direction-sensitive direct dark matter search with μ-TPC * 1.Dark.
Ray Bunker (UCSB) – APS – April 17 th, 2005 CDMS SUF Run 21 Low-Mass WIMP Search Ray Bunker Jan 17 th -DOE UCSB Review.
1 Astroparticle Physics (2/3) Nathalie PALANQUE-DELABROUILLE CEA-Saclay CERN Summer Student Lectures, August )What is Astroparticle Physics ? Big.
G. Gerbier Chinese-french workshop CPPM Marseille sept 2005 Dark Matter : overview of direct searches G. Gerbier CEA/Saclay, DAPNIA -Dark Matter WIMP.
PyungChang 2006/02/06 HYUNSU LEE CsI(Tl) crystals for WIMP search Hyun Su Lee Seoul National University (For The KIMS Collaboration)
Potential for Dark Matter Direct Searches in Australia Professor Elisabetta Barberio The University of Melbourne.
1 CRESST Cryogenic Rare Event Search with Superconducting Thermometers Jens Schmaler for the CRESST group at MPI MPI Project Review December 14, 2009.
Limits on Low-Mass WIMP Dark Matter with an Ultra-Low-Energy Germanium Detector at 220 eV Threshold Overview (Collaboration; Program; Laboratory) Physics.
18-20 May 2015, Underground Science Conference, SDSM&T 1John Harton, Colorado State University Recent Results from the DRIFT Directional DM Experiment.
A Search for Cold Dark Matter with Cryogenic Detectors at Frejus Underground Laboratory * EDELWEISS experiment 1.Experiment status and results for first.
From Edelweiss I to Edelweiss II
Dark Matter Direct Detection roadmap strategy
Searches for Dark Matter
Dark Matter Search With an Ultra-low Threshold Germanium Detector proposed by Tsinghua University Seoul National University Academia Sinica Qian Yue.
Harry Nelson UCSB DUSEL Henderson at Stony Brook May 5, 2006
CRESST Cryogenic Rare Event Search with Superconducting Thermometers
Direct Detection of Dark Matter
Search for Dark Matter physics 805 fall 2008.
Dark Matter Search with Stilbene Scintillator
Detecting WIMPs using Au-DNA Microarrays
Yue, Yongpyung, Korea Prospects of Dark Matter Search with an Ultra-Low Threshold Germanium Detector Yue, Yongpyung, Korea
The Estimated Limits For A 5g LE-Ge Detector
Presentation transcript:

Cosmo02, Chicago september 2002 Maryvonne De Jésus 1 DARK-MATTER Direct Detection Maryvonne De Jésus IPN-Lyon/CNRS France

Cosmo02, Chicago september 2002 Maryvonne De Jésus 2 Flat Universe Ω = Ω Λ + Ω M = 1 Visible < 1% DARK < 30% Dark Energy 70% 30% Matter Neutralino thanks to SUSY!! WIMPs Axions ?????? eV  m  eV Exotic Non-Baryons ~25% <5% Dark Baryons m? COLD HOT

Cosmo02, Chicago september 2002 Maryvonne De Jésus 3 PLAN OF THE TALK  Neutralino Direct Detection  Physics  Techniques  Achievements of the most competitive currently running experiments  Prospects and outlook

Cosmo02, Chicago september 2002 Maryvonne De Jésus 4 How to see Neutralinos ? Accelerators Accelerators : LEP limit  m   45 GeV Fermilab, LHC, … year 200X  … Galactic neutralinos Galactic neutralinos : spherical halo   ~ 0.3 GeV/c 2 /cm 3, v ~ c Indirect detection : Detection of the annihilation products  in space : GLAST, AMS, …  on Earth : Amanda, Antares, Nestor, HESS, HEAT, SuperK, … Direct Detection on Earth : A   R E A The detection reaction of neutralinos is elastic scattering off a target nucleus, the nuclear recoil energy is the measured quantity. Very low energy : E R < 100 keV Very small interaction rate : – c/kg/day

Cosmo02, Chicago september 2002 Maryvonne De Jésus 5 WIMP Direct Detection Physics Experimentally : dR dE R  exp = Signal + Background E R in keV c/kg/keV/d Differential rate Differential rate : dE R 2 m p m  dR  p    F 2 (E R )   f(v) v dv = N T Input paramaters : Astrophysics, particle physics, nuclear physics !!! Energy threshold : As low as possible (in the keV range) due to the quasi exponentially decreasing signal shape as function of recoil energy. Radioactive background : As low as possible, especially neutron background which produces nuclear recoils simulating WIMP signals  Deep underground sites to minimize cosmic radiations  Specific shields : Lead, Copper, Polyethylen Background  0 Exclusion limit in the plot ( m ,  p )  < dR dE R  exp dR dE R  th dR Signal ?  dE R  exp WIMP Mass WIMP -Nucleon Cross-Section (pb)

Cosmo02, Chicago september 2002 Maryvonne De Jésus 6 Is the signal a neutralino ? Target dependent : differential rate varies with target mass Na Xe Pb 8127I 13373Ge Si 15x H keV R 0 c/kg/d A M  =50 GeV v 0 = 220 km/s  p = 7x cm 2 ~ 2 M  2 v 0 2 (M A + M  ) 2 MAMA MM 2 N v 0  p    A 3   R 0 ~ Example of spin-independent interaction Annual Modulation : The solar system moves in the galaxy with a mean velocity of ~220 km/s and Earth moves around the Sun with a velocity of ~30 km/s. In summer the two velocities add-up and in winter they subtract. This seasonnal modulation produces an annual modulation of the wimp interaction rate of the order of 5 to 7 % (the detector moves faster in June than in December) ~30 km/s 60 ° ~220 km/s Jun Dec Sun Earth Diurnal modulation,Directionnality : Asymmetry on the direction of the recoiling nucleus because the wimp velocity distribution on the Earth is peaked in the opposite direction of the Earth motion in the galactic halo. The effect is much larger than the seasonal modulation  N Earth

Cosmo02, Chicago september 2002 Maryvonne De Jésus 7 Some Running Experiments in sept 2002 Boulby, UK ZEPLIN-I CHARGE HEAT LIGHT Sound Exclusion limit < DAMA, 230 kg.d Liq. Xe Exclusion limit < DAMA (~15 kg. d) ( ~ 20 events compatible with n background) Exclusion limit < DAMA, (~15 kg. d) ( keV, 1 evt ~8 kg.d) Proof of the principle ~2g C 4 F 10 + C 3 F 8 Montreal, Canada PICASSO Proof of the principle 6 g M  ~52 GeV,  p ~7x10-6 pb, ~58000kg. d 320 gGe Modane, France EDELWEISS-I ~4 kg Ge SUF, US CDMS-I Annual Modulation signal ~ 90 kgNaI Gran Sasso, Italy DAMA Anomalous events not yet understood ~10 kgNaI Boulby, UK UKDMC Large background 210 Pb contamination 620 kgNaI Oto-Cosmo, Japan ELEGANTS V keV ~0.5 c/kg/d/keV, 1.5 kg. d 262 g Gran-Sasso, Italy CRESST Proof of principle 54 gCaWO 4 50 gAl 2 O 3 Background problems 67 gGe Canfranc, Spain ROSEBUD keV 0.2 – 0.07 c/kg/d/keV, ~27 kg.d 200 gGe Gran Sasso, Italy HDMS keV c/kg/d /keV, ~100 kg.d 2 kgGe Canfranc, Spain IGEX MassMaterialTechnique Laboratory Experiment PSD 4x165g Background problems Al 2 O 3 CaWO 4

Cosmo02, Chicago september 2002 Maryvonne De Jésus 8 WIMP Direct DetectionTechniques ERER Active Background Rejection NaI, CsI, CaF 2, Liq.Xe LIGHT Semiconductors : Ge,Si CHARGE TPC HEAT Cryogenic detectors : Al 2 O 3, LiF Superheat Freon Superheat Freon : PICASSO,SIMPLE HEAT Ge, Si : CDMS, EDELWEISS CHARGE CaWO 4, BGO : CRESST, Rosebud LIGHT HEAT Cryogenic detectors + PSD LIGHT NaI, Liq.Xe : UK/NAIAD, DAMA, ZEPLIN-I CHARGE + TPC Xe : DRIFT Liq.-GasXe : ZEPLIN-II LIGHT CHARGE + PSD

Cosmo02, Chicago september 2002 Maryvonne De Jésus 9 Examples of Active Background Rejection + PSD LIGHT NaI DAMA/NaI,Liq.Xe … (Cerulli //session talk) UK/NAIAD (Spooner ) ZEPLIN-I/Lliq.Xe (Wang //session talk) CHARGE + TPC Xe : UK/DRIFT C recoils S recoils gammas recoil discrimination gammas alphas alpha discrimination S recoil region (>90%) (Snowden-Ifft //session talk)

Cosmo02, Chicago september 2002 Maryvonne De Jésus 10 LIGHTHEAT ROSEBUD (astro-ph/ ) CHARGEHEAT Ge ZIP CDMS EDELWEISS (Benoit et al. astro-ph/ ) (Perera //session talk)

Cosmo02, Chicago september 2002 Maryvonne De Jésus 11 Liq. Xe Boulby, UK ZEPLIN-I CHARGE HEAT LIGHT Some Running Experiments in sept 2002 Sound Exclusion limit < DAMA, 230 kg.d

Cosmo02, Chicago september 2002 Maryvonne De Jésus 12 Current Exclusion Limits ZEPLIN-I Preliminary Spin Independent Interaction

Cosmo02, Chicago september 2002 Maryvonne De Jésus 13 Near Future ( ) projects for WIMP direct detection CHARGE HEAT LIGHT  Reach interaction rates ~ c/kg/d  Reach interaction cross sections of the order of ~10 -8 pb  Reach reasonable Susy models zone The goals for the next years : The efforts in the next years will be focused on :  Improve active background rejection  Active shielding : muon veto  Control the stability over long periods to accumulate statistics TechniqueMassMaterialLab 1 kgLiq. Xe KAMIOKA-Xe 40 kgLiq. Xe PSD Boulby, UKZEPLIN-II 730 kgCaF2Otho-Cosmo, JaponELEGANT-VI 7 x (4x250+3x100) g Ge, SiSoudan, USCDMS-II 250 kgNaIDAMA-LIBRA 760 kgTeO2Gran Sasso, ItalyCUORE 21  120 x 320 g GeModane FranceEDELWEISS-II 5 0 kgNaIBoulby, UK NAIAD Experiment ~7 kgLiq. XeGran Sasso, ItalyDAMA/LXe 33 x 300 g 40  100 kg CaWO4Gran Sasso, ItalyCRESST-II GeGran Sasso, Italy PSD DRIFT-I GENIUS TF- 100 TPC Xe1 m 3 PSD Boulby, UK TPC Sound PICASSO Sudbury, Canada Freon 1-10 kg

Cosmo02, Chicago september 2002 Maryvonne De Jésus 14 WIMP Mass (GeV/c 2 ) Spin independent Interaction WIMP-Nucleon Cross-Section (pb) Projected limit CDMS 2002 ZEPLIN 2002 EDELWEISS 2002 DAMA 2002 Kim et al.,hep-ph/

Cosmo02, Chicago september 2002 Maryvonne De Jésus 15 Some Setups CHARGEHEAT Ge, Si EDELWEISS-II Modane/France 5 m CDMS-II Soudan/US

Cosmo02, Chicago september 2002 Maryvonne De Jésus 16 LIGHTHEAT CaWO 4 Dilution refrigerator 300g CaWO 4 crystal 300g CaWO 4 crystal Light- Detector CRESST-II/ Gran Sasso/Italy

Cosmo02, Chicago september 2002 Maryvonne De Jésus 17 LIGHT Liquid Xe + PSDDAMA/Lxe Gran Sasso/Italy LIGHT Liq-Gas Xe + PSD CHARGE ZEPLIN-II Boulby/UK ~2.5m

Cosmo02, Chicago september 2002 Maryvonne De Jésus 18 Sound PICASSO Sudbury/Canada CHARGE + TPC : Xe Scattered WIMP Recoil Atom Ionisation drift Electric Field Readout Plane DRIFT-I Boulby/UK

Cosmo02, Chicago september 2002 Maryvonne De Jésus 19 World Wide Wimp Quest direct detection experiments Soudan Sudbury Gran Sasso Modane Canfranc Boulby CDMS-IIPICASSO ZEPLIN, DRIFT NAIAD EDELWEISS-II IGEX, ANAIS GEDEON DAMA, GENIUS TF CRESST, CUORE Oto-Cosmo Kamioka ELEGANTS KAMIOKA

Cosmo02, Chicago september 2002 Maryvonne De Jésus 20 What is Dark Matter? « In the Oct. 26, 2001 Science, Ruvkun speculates that the number of genes in the tiny RNA world may turn out to be very large, numbering in the hundreds or even thousands in each genome. Tiny RNA genes may be the biological equivalent of dark matter—all around us but almost escaping detection. » John Travis, Science News, Jan.12, 2002, vol. 161, no. 2 J. Gorman, Science News, Aug 12, 2000, vol. 158, no. 7