Mössbauer spectroscopy of iron-based superconductors A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2, J. Przewoźnik 2 11-family cooperation K. Wojciechowski.

Slides:



Advertisements
Similar presentations
Impurity effect on charge and spin density in α-Fe
Advertisements

169 Tm Mössbauer Spectroscopy J.M. Cadogan Department of Physics and Astronomy University of Manitoba Winnipeg, Manitoba, R3T 2N2 Canada
157 T INTERNAL MAGNETIC FIELD IN Fe[C(SiMe 3 ) 3 ] 2 COMPOUND AT 20K Ernő Kuzmann, 1,2 Roland Szalay, 2 Attila Vértes, 1,2 Zoltán Homonnay, 2 Imre Pápai,
Relativistic Effects in Gold Chemistry Jan Stanek Jagiellonian University Marian Smoluchowski Institute of Physics Krakow, Poland.
investigated by means of the Mössbauer Spectroscopy
Spin reorientation in the Er 2-x Fe 14+2x Si 3 single-crystal studied by Mössbauer spectroscopy J. Żukrowski 1, A. Błachowski 2, K. Ruebenbauer 2, J. Przewoźnik.
Site occupancies in the R 2-x Fe 14+2x Si 3 (R = Ce, Nd, Gd, Dy, Ho, Er, Lu, Y) compounds studied by Mössbauer spectroscopy A. Błachowski 1, K. Ruebenbauer.
Magnetism of the ‘11’ iron-based superconductors parent compound Fe1+xTe: The Mössbauer study A. Błachowski1, K. Ruebenbauer1, P. Zajdel2, E.E. Rodriguez3,
Fractal behavior of the BCC/FCC phase separation in iron-gold alloys Artur Błachowski 1, Krzysztof Ruebenbauer 1, Anna Rakowska 2,3 1 Mössbauer Spectroscopy.
CZUŁOŚĆ SPEKTROSKOPII MÖSSBAUEROWSKIEJ NA PRZEJŚCIE DO NADPRZEWODNICTWA W Ba 0.6 K 0.4 Fe 2 As 2 1 Zakład Spektroskopii Mössbauerowskiej, Instytut Fizyki,
A. Błachowski1, K. Ruebenbauer1, J. Żukrowski2, and Z. Bukowski3
First-principles calculations with perturbed angular correlation experiments in MnAs and BaMnO 3 Workshop, November Experiment: IS390.
Fundamentals of Magnetism T. Stobiecki. Definitions of magnetic fields Induction: External magnetic field: Magnetizationaverage magnetic moment of magnetic.
Electron Spin Resonance Spectroscopy
SDW Induced Charge Stripe Structure in FeTe
The new iron-based superconductor Hao Hu The University of Tennessee Department of Physics and Astronomy, Knoxville Course: Advanced Solid State Physics.
When an nucleus releases the transition energy Q (say 14.4 keV) in a  -decay, the  does not carry the full 14.4 keV. Conservation of momentum requires.
NMR Spectroscopy.
Fundamentals of Magnetism T. Stobiecki, Katedra Elektroniki AGH 2 wykład
57Fe Mössbauer Spectroscopy
Rinat Ofer Supervisor: Amit Keren. Outline Motivation. Magnetic resonance for spin 3/2 nuclei. The YBCO compound. Three experimental methods and their.
B before after ConcepTest #81 A large magnetic field points up, as shown. Initially, a proton has the z- component of its spin magnetic moment pointing.
6-1 RFSS: Lecture 6 Gamma Decay Part 2 Readings: Modern Nuclear Chemistry, Chap. 9; Nuclear and Radiochemistry, Chapter 3 Energetics Decay Types Transition.
Corey Thompson Technique Presentation 03/21/2011
Mössbauer study of iron-based superconductors A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2 1 Mössbauer Spectroscopy Division, Institute of Physics,
Mossbauer Spectroscopy
1 Lecture: Solid State Chemistry (Festkörperchemie) Part 2 (Further spectroscopical methods, ) H.J. Deiseroth, SS 2004.
Determination of Spin-Lattice Relaxation Time using 13C NMR
Mössbauer spectroscopy References: J.P. Adloff, R. Guillaumont: Fundamentals of Radiochemistry, CRC Press, Boca Raton, 1993.
Impurity effect on charge and spin density on the Fe nucleus in BCC iron A. Błachowski 1, U.D. Wdowik 2, K. Ruebenbauer 1 1 Mössbauer Spectroscopy Division,
Nuclear Magnetic Resonance Spectroscopy (NMR) Dr AKM Shafiqul Islam School of Bioprocess Engineering.
Superconducting FeSe studied by Mössbauer spectroscopy and magnetic measurements A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2, J. Przewoźnik 2, K.
Yb valence in YbMn 2 (Si,Ge) 2 J.M. Cadogan and D.H. Ryan Department of Physics and Astronomy, University of Manitoba Winnipeg, MB, R3T 2N2, Canada
Fe As Nodal superconducting gap structure in superconductor BaFe 2 (As 0.7 P 0.3 ) 2 M-colloquium5 th October, 2011 Dulguun Tsendsuren Kitaoka Lab. Division.
Radio Astronomy Emission Mechanisms. NRAO/AUI/NSF3 Omega nebula.
An Introduction to Fe-based superconductors
Giorgi Ghambashidze Institute of Condensed Matter Physics, Tbilisi State University, GE-0128 Tbilisi, Georgia Muon Spin Rotation Studies of the Pressure.
Ch Magnetism I. Characteristics of Magnets (p )  Magnetism  Magnetic poles  Magnetic field  Magnetic domain.
Electronic phase separation in cobaltate perovskites Z. Németh, Z. Klencsár, Z. Homonnay, E. Kuzmann, A. Vértes Institute of Chemistry, Eötvös Loránd University,
Ch. Urban 1, S. Janson 1, U. Ponkratz 1,2, O. Kasdorf 1, K. Rupprecht 1, G. Wortmann 1, T. Berthier 3, W. Paulus 3 1 Universität Paderborn, Department.
Fe As A = Ca, Sr, Ba Superconductivity in system AFe 2 (As 1-x P x ) 2 Dulguun Tsendsuren Kitaoka Lab. Division of Frontier Materials Sc. Department of.
c18cof01 Magnetic Properties Iron single crystal photomicrographs
hyperfine interactions (and how to do it in WIEN2k)
Synthesis and Properties of Magnetic Ceramic Nanoparticles Monica Sorescu, Duquesne University, DMR Outcome Researchers in Duquesne University.
Condensed matter physics in dilute atomic gases S. K. Yip Academia Sinica.
Superconducting FeSe studied by Mössbauer spectroscopy and magnetic measurements A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2, J. Przewoźnik 2, K.
Mineral Spectroscopy Visible Infrared Raman Mössbauer NMR.
A new type Iron-based superconductor ~K 0.8 Fe 2-y Se 2 ~ Kitaoka lab Keisuke Yamamoto D.A.Torchetti et al, PHYSICAL REVIEW B 83, (2011) W.Bao et.
Magnetism of the regular and excess iron in Fe1+xTe
Signatures of Berezinskii-Kosterlitz-Thouless transition in double-layered molecular magnet based on [W V (CN) 8 ] 3- and Cu 2+ Signatures of Berezinskii-Kosterlitz-Thouless.
Comparing erbium moments derived from 166 Er Mössbauer spectroscopy and neutron diffraction D.H. Ryan and J.M. Cadogan Physics Department, McGill University,
Pengcheng Dai The University of Tennessee (UT) Institute of Physics, Chinese Academy of Sciences (IOP) Evolution of spin excitations.
MÖSSBAUER SPECTROSCOPY OF IRON-BASED SUPERCONDUCTOR FeSe
MÖSSBAUER STUDY OF NON-ARSENIC IRON-BASED SUPERCONDUCTORS AND THEIR PARENT COMPOUNDS K. Komędera 1, A. K. Jasek 1, A. Błachowski 1, K. Ruebenbauer 1, J.
Jun Hee Cho1, Sang Gil Ko1, Yang kyu Ahn1, Eun Jung Choi2
Mossbauer spectroscopy
University of Ioannina
Phase diagram of FeSe by nematic ultrafast dynamics
M. Kanuchova1, M. Majoros2,J. Kanuch1,Y,Ding3, M. D. Sumption2, and E
NMR study of 133Cs in a new quasi-one-dimensional conducting platinate
Electric quadrupole interaction in cubic BCC α-Fe
Hyperfine interaction studies in Manganites
I. Characteristics of Magnets
I. Characteristics of Magnets
151Eu AND 57Fe MÖSSBAUER STUDY OF Eu1-xCaxFe2As2
Mössbauer study of BaFe2(As1-xPx)2 iron-based superconductors
Mössbauer study of BaFe2(As1-xPx)2 iron-based superconductors
Z. Leśnikowski, E. Przelazły, K. Dziedzic-Kocurek, J. Stanek
Ion-beam, photon and hyperfine methods in nano-structured materials
Mr.Halavath Ramesh 16-MCH-001 Department of Chemistry Loyola College-Chennai University of Madras.
Presentation transcript:

Mössbauer spectroscopy of iron-based superconductors A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2, J. Przewoźnik 2 11-family cooperation K. Wojciechowski 3, Z.M. Stadnik family cooperation J. Marzec family cooperation K. Rogacki 6, J. Karpinski 7, Z. Bukowski 7 1 Mössbauer Spectroscopy Division, Institute of Physics, Pedagogical University, Cracow, Poland 2 Solid State Physics Department, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Cracow, Poland 3 Department of Inorganic Chemistry, Faculty of Material Science and Ceramics, AGH University of Science and Technology, Cracow, Poland 4 Department of Physics, University of Ottawa, Ottawa, Canada 5 Department of Hydrogen Energy, Faculty of Energy and Fuels, AGH University of Science and Technology, Cracow, Poland 6 Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wrocław, Poland 7 Laboratory for Solid State Physics, ETH Zürich, CH-8093 Zürich, Switzerland

Superconducting Materials

T c max = 56K 38K 25K 15K Fe-based Superconducting Families LaFeAsO BaFe 2 As 2 LiFeAs FeSe

There are two questions concerned with tetragonal/orthorhombic FeSe: 1) is there electron spin density (magnetic moment) on Fe? 2) is there change of electron density on Fe nucleus during transition from P4/nmm to Cmma structure?  -FeSe A tetragonal P4/nmm phase transforms into Cmma orthorhombic phase at about 100 K, and this phase is superconducting with T c ≈ 8 K.

Fe 1.05 Se P4/nmm a = (1) Å c = (1) Å

- point A - spin rotation in hexagonal phase - region B - magnetic anomaly correlated with transition between orthorhombic and tetragonal phases - point C - transition to the superconducting state Magnetic susceptibility measured upon cooling and subsequent warming in field of 5 Oe

Change in isomer shift S ↓ Change in electron density  on Fe nucleus  S = mm/s ↓  ρ = –0.02 electron/a.u. 3 tetragonal orthorhombic and superconducting orthorhombic phase transition

tetragonal orthorhombic and superconducting orthorhombic phase transition Quadrupole splitting Δ does not change - it means that local arrangement of Se atoms around Fe atom does not change during phase transition T (K)S (mm/s)Δ (mm/s)  (mm/s) (3)0.287(1)0.206(1) (3)0.287(1)0.203(1) (3)0.286(1)0.198(1) (3)0.287(1)0.211(1) (4)0.295(1)0.222(1)

Mössbauer spectra obtained in external magnetic field aligned with γ-ray beam Hyperfine magnetic field is equal to applied external magnetic field. Principal component of the electric field gradient (EFG) on Fe nucleus was found as negative.

LiFeP P4/nmm a = 3.698(1) Å c = 6.030(2) Å

Magnetization measured in ZFC mode

Mössbauer spectra of LiFeP T (K)S (mm/s)Δ (mm/s)  (mm/s) RT0.247(1)0.101(1)0.172(1) (1)0.112(2)0.224(1) (1)0.119(3)0.227(2) [FeP 4 ] tetrahedron coordination

122 family of Fe-based superconductors

BaFe 2 As 2 Velocity (mm/s)

Ba 0.7 Rb 0.3 Fe 2 As 2 T c = 37K Velocity (mm/s)

EuFe 2 As 2 Velocity (mm/s)

EuFe 2-x Co x As 2 T c = 10K Velocity (mm/s)

Conclusions FeSe 1. There is no magnetic moment on iron atoms in the P4/nmm and Cmma phases. 2. The electron density on iron nucleus is lowered by 0.02 electron/a.u. 3 at 105K during transition from P4/nmm to Cmma phase. LiFeP 3. There is no magnetic order in the superconducting LiFeP.