Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara 1 PAX Polarized Antiproton eXperiments M. Contalbrigo INFN – Università di Ferarra.

Slides:



Advertisements
Similar presentations
Mitglied der Helmholtz-Gemeinschaft PAX Polarized Antiprotons 2nd Meeting FAIR Experiments February 25, 2009 | Hans Ströher (FZ-Jülich)
Advertisements

SPIN PHYISICS at FAIR F. Bradamante J-PARC WORKSHOP, KEK November 30, 2005.
Spin Filtering Studies at COSY and AD Alexander Nass for the collaboration University of Erlangen-Nürnberg SPIN 2008, Charlottesville,VA,USA, October 8,
PHENIX Decadal Plan o Midterm upgrades until 2015 o Long term evolution after 2015 Dynamical origins of spin- dependent interactions New probes of longitudinal.
P.Lenisa Polarized Antiprotons Experiments 1 dr. Paolo Lenisa Università di Ferrara and INFN - ITALY Project X Workshop FNAL, 01/26/08 Polarized Antiprotons.
Mauro Anselmino, Prague, August 1, 2005 Hadron Structure and Hadron Spectroscopy Transversity (transverse spin and transverse motion) Transversity distributions.
Constraining the polarized gluon PDF in polarized pp collisions at RHIC Frank Ellinghaus University of Colorado (for the PHENIX and STAR Collaborations)
GSI P. Lenisa - Univ. Ferrara and INFN 1 PAX Polarized Antiproton Experiment PAX Collaboration Spokespersons: Paolo.
Paolo Lenisa, Kolya Nikolaev, Frank Rathmann Institut für Kernphysik Forschungszentrum Jülich L.D.Landau Institute, Chernogolovka Future QCD Spin-physics.
P. Lenisa The PAX project 1 Paolo Lenisa – Università and INFN – Ferrara, ITALY Trento, July 6 th PAX Polarized Antiproton.
Working Group on e-p Physics A. Bruell, E. Sichtermann, W. Vogelsang, C. Weiss Antje Bruell, JLab EIC meeting, Hampton, May Goals of this parallel.
Mar. 17, 2006 Imran Younus Probing Gluon Polarization with Longitudinally Polarized p+p Collisions at  s = 200 GeV.
Simulations of Single-Spin Asymmetries from EIC Xin Qian Kellogg, Caltech EIC Meeting at CUA, July 29-31, TMD in SIDIS 2.Simulation of SIDIS.
1 Updates on Transversity Experiments and Interpretations Jen-Chieh Peng Transversity Collaboration Meeting, JLab, March 4, 2005 University of Illinois.
Drell-Yan Perspectives at FAIR Marco Destefanis Università degli Studi di Torino Drell-Yan Scattering and the Structure of Hadrons Trento (Italy) May 21-25,
Polarized Antiprotons at GSI
International Workshop on Transverse Polarisation Phenomena in Hard Processes Como, September 7- 10, 2005 Marco Maggiora Dipartimento di Fisica ``A. Avogadro''
Antiproton Physics Experiments Keith Gollwitzer -- Fermilab Antiproton Sources Accumulator Antiproton Physics Experiments –Precision measurements Method.
Transversity and the PAX GSI Alessandro Drago University of Ferrara.
EINN 2005 Spin dependence-theory September 23rd, Milos, Greece 1 Spin dependence: theory and phenomenology Electromagnetic Interactions with Nucleons and.
Status Report of HERMES Pasquale Di Nezza (on behalf of HERMES Collaboration) First measurement of transversity Exotic baryons: the pentaquark The spectrometer.
Zhongbo Kang Los Alamos National Laboratory QCD structure of the nucleon and spin physics Lecture 5 & 6: TMD factorization and phenomenology HUGS 2015,
PANIC05 M. Liu1 Probing the Gluon Polarization with A LL of J/  at RHIC Ming X. Liu Los Alamos National Lab (PHENIX Collaboration)
Single-spin asymmetries in two hadron production of polarized deep inelastic scattering at HERMES Tomohiro Kobayashi Tokyo Institute of Technology for.
Inelastic scattering When the scattering is not elastic (new particles are produced) the energy and direction of the scattered electron are independent.
Jim Stewart DESY Measurement of Quark Polarizations in Transversely and Longitudinally Polarized Nucleons at HERMES for the Hermes collaboration Introduction.
1 dr. Paolo Lenisa Università di Ferrara and INFN – ITALY on behalf of the PAX-Collaboration Perspectives for Polarized Antiprotons Polarized Antiprotons.
Single-Spin Asymmetries at CLAS  Transverse momentum of quarks and spin-azimuthal asymmetries  Target single-spin asymmetries  Beam single-spin asymmetries.
Oct 6, 2008Amaresh Datta (UMass) 1 Double-Longitudinal Spin Asymmetry in Non-identified Charged Hadron Production at pp Collision at √s = 62.4 GeV at Amaresh.
Frank Rathmann Forschungszentrum Jülich Spin-physics with Polarized Antiprotons.
International Accelerator Facility for Beams of Ions and Antiprotons at Darmstadt Construction of FAIR Phase-1 December 2005 J. Eschke, GSI Construction.
1 Probing Spin and Flavor Structures of the Nucleon with Hadron Beams Flavor and spin structures of the nucleons –Overview and recent results Future prospects.
Measurements with Polarized Hadrons T.-A. Shibata Tokyo Institute of Technology Aug 15, 2003 Lepton-Photon 2003.
Perspectives for polarized antiprotons Paolo Lenisa Università di Ferrara and INFN - Italy Perspectives for Polarized Antiprotons MENU 2013 – Rome, September.
Transverse Single-Spin Asymmetries Understanding the Proton: One of the fundamental building blocks of ordinary matter! Spin decomposition of proton still.
P.F.Dalpiaz16 june Polarized Antiproton at FAIR The PAX experiment P.F.Dalpiaz P.F.DalpiazFerrara 2 workshop on the QCD structure of the nucleon.
Towards Polarized Antiprotons Frank Rathmann Institut für Kernphysik Forschungszentrum Jülich Workshop on „Observables in Antiproton-Proton Interactions“
HERMES results on azimuthal modulations in the spin-independent SIDIS cross section Francesca Giordano DESY, Hamburg For the collaboration Madrid, DIS.
Possibility of direct extraction of the transversitiy from polarized Drell-Yan measurement in COMPASS Transversity Drell-Yan for transverstiy transverse.
Measurement of Flavor Separated Quark Polarizations at HERMES Polina Kravchenko (DESY) for the collaboration  Motivation of this work  HERMES experiment.
TMD flavor decomposition at CLAS12 Patrizia Rossi - Laboratori Nazionali di Frascati, INFN  Introduction  Spin-orbit correlations in kaon production.
1 Quarkonium Production at J-PARC Quarkonium Production at J-PARC with Unpolarized Proton Beam Quarkonium Production at J-PARC with Polarized Beam and.
PAX experiment PAX: Polarized Antiproton Experiments 1 dr. Paolo Lenisa Università di Ferrara and INFN - ITALY ECT – Workshop: Hadronic structure of the.
I R F U Nucleon structure studies with the COMPASS experiment at CERN Stephane Platchkov Institut de Recherche sur les lois Fondamentales de l’Univers.
PAX experiment PAX: Polarized Antiproton Experiments 1 dr. Paolo Lenisa Università di Ferrara and INFN - ITALY DIS 2005 XIII International Workshop on.
Spin and k ┴ dependent parton distributions Mauro Anselmino, ECT* Trento, 04/07/ a closer look at the nucleon structure -  integrated partonic distributions.
New results from Delia Hasch DPG Spring Meeting 2004 – Nuclear Physics Cologne (Germany) March, (on behalf of the HERMES Collaboration) Exotic.
The PAX Project and HEPI TSU Contribution 06 August, GGSWBS’12, Tbilisi. Mirian Tabidze High Energy Physic Institute of TSU.
Future studies of TMDs Delia Hasch SIR05- International Workshop on Semi-inclusive reactions and 3D-parton distributions May 18-20, 2005; Jefferson Lab,
Drell-Yan Studies in ppbar Reactions at FAIR Marco Destefanis Università degli Studi di Torino 43 rd PANDA Collaboration Meeting GSI, Darmstadt (Germany)
Past Fermilab Accumulator Experiments Antiproton Source Accumulator Ring (Inner Ring) Debuncher Ring (Outer Ring) AP50 Experiment Area PRECISION Precision.
Future Drell-Yan program of the COMPASS cllaboration Norihiro DOSHITA (Yamagata University) On behalf of the COMPASS collaboration 2016/7/31N. Doshita.
1 Transversity Experiments Experimental probes for transversity Current experimental status on transversity and other related distribution and fragmentation.
Timelike Compton Scattering at JLab
Transversity (transverse spin and transverse motion)
Explore the new QCD frontier: strong color fields in nuclei
Measurements of quark transversity and orbital motion in hard scattering Yoshiyuki Miyachi Tokyo Institute of Technology.
Luciano Pappalardo for the collaboration
Villa Olmo (Como), 7−10th. September 2005
Plans for nucleon structure studies at PANDA
Prague 2007 Collins and Sivers asymmetries
Physics with polarized antiprotons at GSI-PAX
PAX project at FAIR Marco Contalbrigo – INFN and Università di Ferrara - ITALY Tbilisi, 5 September 2006 M. Contalbrigo.
Strangeness and Spin in Fundamental Physics
M. Contalbrigo (on behalf of HERMES collaboration)
A Precision Measurement of GEp/GMp with BLAST
Transverse Spin Physics at RHIC II
Transverse-sea measurements at JPARC
Spin Studies via Drell-Yan Process at PANDA
Presentation transcript:

Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara 1 PAX Polarized Antiproton eXperiments M. Contalbrigo INFN – Università di Ferarra

Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara 2 PAX Collaboration TIMELINE Jan. 04 Letter of Intent May 04QCD-PAC meeting at GSI Aug. 04Workshop on polarized antiprotons at GSI Jan. 05 Technical Report Mar. 05QCD-PAC meeting at GSI 178 physicists (121 in August 2004) 35 institutions (15 EU, 20 NON-EU)

Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara 3 … the PAC would like to stress again the uniqueness of the program with polarized anti-protons and polarized protons that could become available at GSI. Evaluation by QCD-PAC (March 2005) …the PAC considers it is essential for the FAIR project to commit to polarized antiproton capability at this time and include polarized transport and acceleration capability in the HESR, space for installation of the APR and CSR and associated hardware, and the APR in the core project We request the PAX collaboration to: 1) Commit to the construction and testing of the APR 2) Explore all options to increase the luminosity to the value of cm -2 s -1 3) Prepare a more detailed physics proposal and detector design for each of the proposed stages. These stages may include: a) 3.5 GeV/c polarized antiprotons on a polarized proton target b) 15 GeV/c polarized antiprotons with the PANDA detector (for single spin asymmetries) c) 15 GeV/c polarized antiprotons on a polarized proton target in a dedicated detector d) Collisions of 15 GeV/c antiprotons with 3.5 GeV/c polarized protons.

Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara 4 Outline Introduction –Physics Case –The FAIR project PAX Accelerator Setup –Staging –Antiproton Polarizer Ring –Asymmetric Antiproton-Proton Collider Experiment –Conceptual Detector Design –Preliminary Results for Drell-Yan Studies –Rate estimates

Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara 5 Physics with polarized antiprotons at GSI-PAX Transversity via Drell-Yan processes direct access to transversity Transverse Single Spin Asymmetries QCD “theorem”: (Sivers) D-Y = – (Sivers) DIS Time-like e.l.m. form factors form factors Elastic processes spin mysteries like in pp ? High Energy Low Energy

Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara 6 Leading Twist Distribution Functions 1/2 L L + f 1 (x) h 1 (x) proton proton’ quarkquark’ u  = 1/  2(u R + u L ) u  = 1/  2(u R - u L ) No probabilistic interpretation in the helicity base (off diagonal) Probabilistic interpretation in helicity base: q(x) spin averaged (well known)  q(x) helicity diff. (known)  q(x) helicity flip (unknown) 1/2 R R L L - R R g 1 (x) Transversity base 1/2 -1/2 R L -        

Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara 7 -Probes relativistic nature of quarks -No gluon analog for spin-1/2 nucleon -Different Q 2 evolution than  q -Sensitive to valence quark polarizationTransversity Chiral-odd: requires another chiral-odd partner Properties : Impossible in DIS Direct Measurement ppe+e-Xppe+e-X ep   e’h  X Indirect Measurement: Convolution of with unknown fragment. fct. h 1 x h 1 h 1 x Collins function h 1 must couple to another chiral-odd function

Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara 8 Elementary LO interaction: Plenty of single and double spin effects Drell-Yan process M invariant Mass of lepton pair

Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara 9 Barone, Calarco, Drago Martin, Schäfer, Stratmann, Vogelsang h 1 from p-p Drell-Yan at RICH/U70 h 1q (x, Q 2 ) small and with much slower evolution than Δq(x, Q 2 ) and q(x, Q 2 ) at small x h 1q (x, Q 2 ) - ≠ RHIC: τ=x 1 x 2 ~10 -3 → sea quarks (A TT very small ~ 0.01 )

Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara 10 h 1 from pbar-p Drell-Yan at GSI Similar predictions by Efremov et al., Eur. Phys. J. C35, 207 (2004) PAX :    s=x 1 x 2 ~ → valence quarks (A TT large ~ ) Anselmino et al. PLB 594,97 (2004)

Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara 11 Kinematics for Drell-Yan processes QCD corrections might be very large at smaller values of M, for cross- sections, not for A TT : K-factor almost spin-independent H. Shimizu, G. Sterman, W. Vogelsang and H. Yokoya, hep-ph/ V. Barone et al., in preparation Fermilab E GeV/c CERN NA GeV/c "safe region" Usually taken as Q 2 >4 GeV 2

Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara 12 s=45 GeV 2 s=210 GeV 2 s=45 GeV 2 s=210 GeV 2 Cross-section Asymmetry

Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara 13 Physics with polarized antiprotons at GSI-PAX Transversity via Drell-Yan processes direct access to transversity Transverse Single Spin Asymmetries QCD “theorem”: (Sivers) D-Y = – (Sivers) DIS Time-like e.l.m. form factors form factors Elastic processes spin mysteries like in pp ? High Energy Low Energy

Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara 14 Single Spin Asymmetries (and their partonic origin) pqpq PqPq π k┴k┴ Collins effect = fragmentation of polarized quark depends on P q · (p q x k ┴ ) P p k┴k┴ Sivers effect = number of partons in polarized proton depends on P · (p x k ┴ ) q p k┴k┴ Boer-Mulders effect = polarization of partons in unpolarized proton depends on P q · (p x k ┴ ) q PqPq Collins: chiral-odd Sivers: chiral-even Boer-Mulders: chiral-odd These effects may generate SSA

Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara 15 BNL-AGS √s = 6.6 GeV 0.6 < p T < 1.2 p ↑ p E704 √s = 20 GeV 0.7 < p T < 2.0 p ↑ p STAR-RHIC √s = 200 GeV 1.1 < p T < 2.5 p ↑ p E704 √s = 20 GeV 0.7 < p T < 2.0 p ↑ p SSA, pp → πX

Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara 16 SSA, SIDIS Collins Sivers HERMES

Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara 17 SSA, SIDIS COMPASS

Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara 18 Physics with polarized antiprotons at GSI-PAX Transversity via Drell-Yan processes direct access to transversity Transverse Single Spin Asymmetries QCD “theorem”: (Sivers) D-Y = – (Sivers) DIS Time-like e.l.m. form factors form factors Elastic processes spin mysteries like in pp ? High Energy Low Energy

Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara 19 pp Elastic Scattering from ZGS Spin-dependence at large-P  90° cm ): Spin-dependence at large-P  (90° cm ): Hard scattering takes place only with spins . D.G. Crabb et al., PRL 41, 1257 (1978) T=10.85 GeV Similar studies in pp elastic scattering

Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara 20 Physics with polarized antiprotons at GSI-PAX Transversity via Drell-Yan processes direct access to transversity Transverse Single Spin Asymmetries QCD “theorem”: (Sivers) D-Y = – (Sivers) DIS Time-like e.l.m. form factors form factors Elastic processes spin mysteries like in pp ? High Energy Low Energy

Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara 21 (Phys. Rev.C 68 (2003) ) JLab PT data SLAC RS data TWO DIFFERENTS METHODS TWO DIFFERENTS RESULTS COMPARISON BETWEEN ROSENBLUTH SEPARATION AND POLARIZATION TRANSFER TECNIQUES Proton Electromagnetic Formfactors

Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara 22 Proton Electromagnetic Formfactors Single-spin asymmetry in pp → e + e - –Measurement of relative phases of magnetic and electric FF in the time-like region Double-spin asymmetry in pp → e + e - –independent G E -G m separation –test of Rosenbluth separation in the time-like region S. Brodsky et al., Phys. Rev. D69 (2004)

Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara 23 Outline Introduction –Physics Case –The FAIR project PAX Accelerator Setup –Staging –Antiproton Polarizer Ring –Asymmetric Antiproton-Proton Collider Experiment –Conceptual Detector Design –Preliminary Results for Drell-Yan Studies –Rate estimates

Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara 24 Facilty for Antiproton and Ion Research (GSI, Darmstadt, Germany) -Proton linac (injector) -2 synchrotons (30 GeV p) -A number of storage rings  Parallel beams operation

Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara 25 HESR Antiproton Production Target HESR (High Energy Storage Ring) p = GeV/c (22 GeV/c) (Length 442 m Bρ = 50 Tm) PANDA: storage ring (N=5 x pbar) High luminosity mode (Δp/p ~ ) Luminosity = 2 x cm -2 s -1 High resolution mode (Δp/p ~ ) Luminosity = cm -2 s -1 PAX : synchroton (N=3 x pbar) Preserve polarization Luminosity = 2 x cm -2 s -1 The Antiproton Facility Antiproton production similar to CERN Production rate 10 7 /sec at 30 GeV Super FRS NESR CR Beam Cooling: e - and/or stochastic SIS100/300

Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara 26 Outline Introduction –Physics Case –The FAIR project PAX Accelerator Setup –Staging –Antiproton Polarizer Ring –Asymmetric Antiproton-Proton Collider Experiment –Conceptual Detector Design –Preliminary Results for Drell-Yan Studies –Rate estimates

Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara 27 PAX Accelerator Setup In the following, focus on two issues: Antiproton Polarizer Ring (APR) Asymmetric Antiproton-Proton Collider

Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara 28 Staging: Phase I Physics:EMFF pbar-p elastic Experiment: pol./unpol. pbar on internal polarized target Independent from HESR running

Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara 29 Staging: Phase II EXPERIMENT: 1. Asymmetric collider : polarized antiprotons in HESR (p=15 GeV/c) polarized protons in CSR (p=3.5 GeV/c) 2. Internal polarized target with 22 GeV/c polarized antiproton beam. Physics: Transversity Second IP with minor interference with PANDA

Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara 30 Outline Introduction –Physics Case –The FAIR project PAX Accelerator Setup –Staging –Antiproton Polarizer Ring –Asymmetric Antiproton-Proton Collider Experiment –Conceptual Detector Design –Preliminary Results for Drell-Yan Studies –Rate estimates

Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara 31 Principle of spin filter method P beam polarization Q target polarization k || beam direction σ tot = σ 0 + σ  ·P·Q + σ || ·(P·k)(Q·k) transverse case:longitudinal case: For initially equally populated spin states:  (m=+½) and  (m=-½) Unpolarized anti-p beam Polarized H target

Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara 32 The HERMES target Atomic Beam Source NIM A 505, (2003) 633 P z+ = |1> + |4> P z- = |2> + |3> m j = +1/2 m j = -1/2 m i =-1/2 m i =+1/2 1 |1> |2> |3> |4> ee-ee-p |1>

Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara 33 Performance of Polarized Internal Targets P T =  HERMES H Transverse Field (B=297 mT) HERMES DzDz D zz P T = ± Longitudinal Field (B=335 mT) HERMES: Stored Positrons PINTEX: Stored Protons H Fast reorientation in a weak field (x,y,z) Targets work very reliably (months of stable operation)

Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara 34 Exploitation of Spin Transfer PAX will employ spin-filter from internal polarized hydrogen target to antiprotons Hydrogen gas target: in strong field (300 mT) F. Rathmann. et al., PRL 71, 1379 (1993) Low energy pp scattering  1 <0   tot+ <  tot- Expectation TargetBeam   FILTEX Results

Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara 35 Puzzle from FILTEX Test Observed polarization build-up: dP/dt = ± (1.24 ± 0.06) x h -1 Expected build-up: P(t)=tanh(t/τ pol ), 1/τ pol =σ 1 Qd t f=2.4x10 -2 h -1  about factor 2 larger! σ 1 = 122 mb (pp phase shifts) Q = 0.83 ± 0.03 d t = (5.6 ± 0.3) x cm -2 f = MHz Three distinct effects (measured  1 =69 mb): 1.Selective removal through scattering beyond Ψ acc =4.4 mrad σ R  =83 mb 2.Small angle scattering of target protons into ring acceptance σ S  =52 mb 3.Spin transfer from polarized electrons of the target atoms to the stored protons σ EM  =70 mb (-) Horowitz & Meyer, PRL 72, 3981 (1994) H.O. Meyer, PRE 50, 1485 (1994)

Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara Beam Polarization P(2·τ beam ) 10 T (MeV)100 EM only Ψ acc =50 mrad 0 1 Filter Test: T = 23 MeV Ψ acc = 4.4 mrad Beam Polarization (Electromagnetic Interaction)

Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara 37 Beam Polarization (Hadronic Interaction: Longitudinal Case) Experimental Tests required: EM effect needs protons only (COSY) Final Design of APR: Filter test with p at AD (CERN) Model D: V. Mull, K. Holinde, Phys. Rev. C 51, 2360 (1995) Model A: T. Hippchen et al., Phys. Rev. C 44, 1323 (1991) T (MeV) T (MeV) P P 2 beam lifetimes Ψ acc =10-50 mrad 3 beam lifetimes Ψ acc =20 mrad

Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara 38 SMILE: Spin Measurements in Interactions at Low Energy Study of spin-filtering process. Electromagnetic interaction: unpolarized protons on polarized internal target at COSY Hadronic interaction: unpolarized antiprotons on polarized internal target at AD (CERN). From COSY to FAIR… From COSY to FAIR…

Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara 39 Outline Introduction –Physics Case –The FAIR project PAX Accelerator Setup –Staging –Antiproton Polarizer Ring –Asymmetric Antiproton-Proton Collider Experiment –Conceptual Detector Design –Preliminary Results for Drell-Yan Studies –Rate estimates

Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara 40 RINGS SETUP asymmetric collider L = 2∙10 30 cm -2 s -1

Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara 41 Outline Introduction –Physics Case –The FAIR project PAX Accelerator Setup –Staging –Antiproton Polarizer Ring –Asymmetric Antiproton-Proton Collider Experiment –Conceptual Detector Design –Preliminary Results for Drell-Yan Studies –Rate estimates

Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara 42 PAX Detector Concept PAX Detector Concept Physics: h 1 distribution sin 2  EMFF sin2  pbar-p elastic high |t| Magnet: Keeps beam polarization vertical Compatible with Cerenkov Compatible with polarized target Detector: Extremely rare DY signal (10 -7 p-pbar) Maximum Bjorken-x coverage (M interval) Excellent PID (hadron/e rejection ~ 10 4 ) High mass resolution (≤2 %) Moderate lepton energies (0.5-5 GeV) Azimuthally Symmetric: BARREL GEOMETRY LARGE ANGLES Experiment: Flexible Facility TOROID NO FRINGE FIELD e+e-e+e-

Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara 43 PAX Detector Concept PAX Detector Concept Designed for Collider but compatible with fixed target Cerenkov (200  m) (20  m) GEANT simulation

Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara 44 Outline Introduction –Physics Case –The FAIR project PAX Accelerator Setup –Staging –Antiproton Polarizer Ring –Asymmetric Antiproton-Proton Collider Experiment –Conceptual Detector Design –Preliminary Results for Drell-Yan Studies –Rate estimates

Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara 45  -p Phase Space Background peaks at * low energy * forward direction acceptance

Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara 46 Background to Drell-Yan e + e - Background to Drell-Yan e + e - ½ hour experiment: 2∙10 8 p-pbar interactions several DY events combinatorial +charm bckg Background 1:1 to signal after PID, E>300 MeV, conversion veto, mass cut * the combinatorial component can be subtracted (wrong-sign control sample) * the charm can be reduced (vertex decay) & --

Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara 47  -p Phase Space Vertex resolution high enough to study charm background Better than 2% mass resol * x dependence of h 1 * resonance vs continuum Mandatory to study M below J/ψ mass

Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara 48 Outline Introduction –Physics Case –The FAIR project PAX Accelerator Setup –Staging –Antiproton Polarizer Ring –Asymmetric Antiproton-Proton Collider Experiment –Conceptual Detector Design –Preliminary Results for Drell-Yan Studies –Rate estimates

Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara % precision on the h 1 u (x) in the valence region 1 year of data taking at GeV collider L = 2∙10 30 cm -2 s -1 Precision in h 1 measurement Precision in h 1 measurement

Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara 50 Summary PAX project has an innovative spin physics program * transversity * SSA * EMFF * hard p-pbar scatterings A method to obtain an antiproton beam with high degree of polarization has to be optimized (APR) PAX viable accelerator setup provides fexible 2 nd IP really matched to the physics items * lots of interesting QCD physics in PAX Phase-I * asymmetric collider ideal to map transversity (Phase-II)

Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara 51 Background to Drell-Yan e + e - Background to Drell-Yan e + e - ½ hour experiment: 2∙10 8 p-pbar interactions several DY events combinatorial +charm bckg Background 1:1 to signal after PID, E>300 MeV, conversion veto, mass cut * the combinatorial component can be subtracted (wrong-sign control sample) * the charm can be reduced (vertex decay) & --

Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara 52 PAX Integrated Luminosities for Physics Cases pb -1 fb -1 Integrated Luminosity EMFF, DSA, s=3.76 GeV 2 ppbar elastic, DSA, t=4 GeV 2 Phase-I: L=1.5·10 31 cm -2 s -1 Antiproton Beam Polarization P pbar =0.3, Proton Polarization P p =0.8 Phase-II: L=2·10 30 cm -2 s -1 EMFF, DSA, s=9 GeV 2 Absolute Error Δ DSA =0.05 h 1, DSA, M>2 GeV, Δ=10% h 1, DSA, M>4 GeV, Δ=20% (1 y) (4 y) (1 y)

Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara 53 Barone, Calarco, Drago Martin, Schäfer, Stratmann, Vogelsang h 1 from p-p Drell-Yan at RICH/U70 h 1q (x, Q 2 ) small and with much slower evolution than Δq(x, Q 2 ) and q(x, Q 2 ) at small x h 1q (x, Q 2 ) - ≠ RHIC: τ=x 1 x 2 ~10 -3 → sea quarks (A TT very small ~ 0.01 ) RICH energies :