Properties of Vector Mesons in Matter - Theory and Phenomenology Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA 19. Quark Matter Conference Shanghai, China,
1.) Introduction: Basic Questions Vector-meson propagators Broader Impact: Are , and alike? cold vs. hot matter in-medium hadrons + equation of state phase transitions (condensates, f , susceptibilities, …) Phenomenology: production mechanism (elementary: p-A, -A, thermal: A-A) competing sources (centrality, p T, √s, …) E.M. Correlation Function: Im em ~ [ImD +ImD /10+ImD /5] qq _ 4 KK
2.) Constraints from QCD Lattice Sum Rules 3.) Hadronic Spectral Functions Many-Body Theory Bare Parameters Dilepton Rates 4.) Dilepton Phenomenology in URHICs SPS (NA60, NA45) RHIC 5.) Conclusions Outline
2.1 Lattice QCD: Susceptibilites Quark-number susceptibilities: [Allton etal. ’05] “dropping” -mass at critical point? “smooth” spectral function across phase diagram?! Isoscalar (“ ”) Isovector (“ ”)
2.2 Sum Rules and Order Parameters [Weinberg ’67, Das etal ’67, Kapusta+Shuryak ‘93] QCD-SRs: - lhs: OPE (condensates!) - rhs: spectral function, (0)= 1 ⁄ 9 (0) [Hatsuda+Lee’91, Asakawa+Ko ’92, Klingl etal ’97, Leupold etal ’98, Kämpfer etal ‘03,Ruppert etal ’05] Promising synergy of lQCD and effective models! 0.2% 1% Weinberg-SRs: moments Vector Axialvector Meson
> > V B *,a 1,K 1... N, ,K … 3.) Medium Effects I: Hadronic Interactions D V (M,q; B,T) = [M 2 - m V 2 - VP - VB - VM ] -1 V-Propagator: [Chanfray etal, Herrmann etal, RR etal, Koch etal, Weise etal, Mosel etal, Eletsky etal, Oset etal, Lutz etal …] VP = VB,VM = Selfenergies: V Constraints: decays: B,M→ VN, V scattering: N/A, N→VN, … B / [RR,Wambach etal ’99] Meson “Melting” Switch off Baryons
3.2 Spectral Functions from Free V-N/- Scattering fair model agreement (~ compatible with QCDSR) -broadening somewhat less pronounced [RR+Wambach ’99] [Eletsky etal ’01] [Eletsky etal ’01] -Meson -Meson Im V ~ ImT VN N + ImT V ~ VN,V + dispersion relation for ReT V
3.2 Medium Effects II: Dropping Mass Hidden Local Symmetry: -mass ↔ “Higgs” mechanism Vector Manifestation of Chiral Symmetry: L ↔ In-Medium: thermal -loops, m (0), g →0 (renormalization group) - dropping -mass - vector dominance violated: a = 2 → 1 [Harada+ Yamawaki ‘01] ~(a-2) ~a Open Issues: - “flash temperature” T f ~ 0.7 T c ( symm.!) - extrapolation to T c - no resonances, baryons [Sasaki+Harada ’06: P81] EM Formfactor 0.85T c vac
3.3 Dilepton Emission Rates “matching” HG -QGP at ~T c : “Quark-Hadron Duality” ?! (pQCD↔ chirally symmetric) anti-/baryons important at RHIC -meson more stable Isovector ( ) at SPS [qq→ee] [qq+HTL] ---- Inclusive ( ) at RHIC
4.) Dilepton Spectra in Heavy-Ion Collisions evolve over thermal fireball, isentropic QGP-Mix-HG central In-In: T 0-fo =195→120MeV, T c =175MeV, FB =7fm Thermal Emission: + + absolute norm., melting M>0.9GeV: “4 ”→ and baryon effects essential [van Hees+ RR ‘06]
4.2 Chiral Virial Approach vs. NA60 low-density expansion + chiral reduction also: compare fireball vs. hydrodynamics good agreement fireball - hydro (p T -spectra!) lack of broadening [van Hees+RR ‘06] [Dusling,Teaney+Zahed ’06]
4.3 NA60 p T -Spectra vs. Hadronic Many-Body improved freezeout- ( -factor!) + Drell-Yan (p T >1.5GeV) approx. agreement (local slopes?!) See parallel talks by H.van Hees, J.Ruppert
4.4 Pb-Au Collisions at SPS: CERES/NA45 very low-mass di-electrons ↔ low-energy photons [Turbide etal.’03, Alam etal.‘01]
4.5 Dileptons at RHIC low mass: thermal! (mostly in-medium ) connection to Chiral Restoration: a 1 (1260)→ , 3 intermed. mass: QGP vs. cc → e + e - X (softening?) - [RR ’01] [R. Averbeck, PHENIX] QGP [Toia etal. ’06]
5.) Conclusions Hot+Dense Hadronic Matter: -broadening matured (melting at ~T c → hadronic liquid!?) Differences between and (critical point)?! NA45, NA60: - support “quark-hadron duality” - (anti-)baryon-induced medium effects Looking forward to further exciting developments … Chiral Restoration: - direct (exp.): measure axialvector ( ) - indirect (theo.): chiral + QCD sum rules HADES, RHIC, LHC, SPS-09, CBM, …, elementary reactions ( cf. working group reports RHIC-II [nucl-ex/ ], CBM [in prep.])
“4 “ states dominate the vacuum e.m. correlator above M ≈ 1.1GeV lower estimate: use vacuum 4 correlator upper estimate: O (T 2 ) medium effect → “chiral V-A mixing”: with Intermediate-Mass Region [Eletsky+Ioffe ‘90] [van Hees+RR ‘06] 44 22
[Leupold ’98, Ruppert etal ’05] 0.2% 1% QCD Sum Rules + (770) in Nuclear Matter dispersion relation for correlator: lhs: OPE (spacelike Q 2 ): rhs: hadronic model (s>0): [Shifman,Vainshtein +Zakharov ’79] 4-quark condensate!
3.1.2 (770) Spectral Function in Nuclear Matter In-med -cloud + -N → B* resonances Relativist. -N → B* (low-density approx) In-med -cloud + -N → N(1520) Constraints: N, A N → N PWA good agreement: strong broadening + small mass-shift up constraints from (vacuum) data important quantitatively N=0N=0 N=0N=0 N =0.5 0 [Urban etal ’98] [Post etal ’02] [Cabrera etal ’02]
3.1 Lattice QCD (QGP) T=1.5T c lQCD << pQCD at low mass (finite volume?) currently no thermal photons from lQCD vanishing electric conductivity!? but: [Gavai ’04] Dilepton Rate ~ Im ( ,q=0)/ 2 EM Correlator Im ( ,q)/ 2 [Bielefeld Group ’02, ‘05] 3.) Medium Effects and Thermal Dileptons
4.6 Dropping-Mass Scenarios vs. NA60 thermal fireball with absolute normalization dropping mass disfavored? free decays at freezeout? flash temperature? baryons? chem. potentials? extrapolation to T c ? [Brown+Rho ’91, Hatsuda+Lee ’92,…, Harada+Yamawaki ‘01] HLS: [Sasaki+Harada ‘06] (T flash =122MeV)
4.2.5 Chiral Virial Approach vs. NA60 (central) [Steele,Yamagishi +Zahed ’99] [implementation van Hees+RR ’05]
5.) Electromagnetic Probes Thermal Photons I : SPS Expanding Fireball + pQCD pQCD+Cronin at q t >1.6GeV T 0 =205MeV suff., HG dom. addt’l meson-Bremsstrahlung → K→ K substantial at low q t [Liu+ RR’05] WA98 “Low-q t Anomaly” [Turbide,RR+Gale’04]
4.2.2 In-In at SPS: Theory vs. NA60 predictions based on -spectral function of [RR+Wambach ’99] uncertainty in fireball lifetime (±25% norm.); or: infer FB ≈ 7fm/c ! relative strength of thermal sources fix good agreement with melting, including p t dependence [van Hees +RR ‘06]