Eddy Covariance Flux Measurements in Nocturnal conditions Marc Aubinet Aubinet, Ecol. Appl., in prep. Open Science Conference. The GHG Cycle in the Northern.

Slides:



Advertisements
Similar presentations
Evidence of nocturnal horizontal transport of CO 2 at an Amazon pasture/agricultural site Otávio Acevedo, Osvaldo Moraes, Rodrigo da Silva Universidade.
Advertisements

Moisture Transport in Baroclinic Waves Ian Boutle a, Stephen Belcher a, Bob Plant a Bob Beare b, Andy Brown c 24 April 2014.
NATO ASI Conference, Kyiv Pollutant Dispersion Investigation of buoyancy effects on distribution of mean concentration field in the turbulent circulation.
Section 2: The Planetary Boundary Layer
1 Division of Atmospheric Sciences, Department of Physical Sciences, University of Helsinki, POBox 64, FIN-00014, Helsinki, Finland (e  mail:
Characteristics of horizontal and vertical fluxes of CO 2 during the ADVEX Experiment at the Wetzstein site, in Thuringia, Germany Marcelo Zeri 1, Corinna.
Watershed Hydrology, a Hawaiian Prospective: Evapotranspiration Ali Fares, PhD Evaluation of Natural Resource Management, NREM 600 UHM-CTAHR-NREM.
Cold Fronts and their relationship to density currents: A case study and idealised modelling experiments Victoria Sinclair University of HelsinkI David.
The Atmospheric Boundary Layer (ABL) over Mesoscale Surface Heterogeneity 25 June 2009 Song-Lak Kang Research Review.
THE PARAMETERIZATION OF STABLE BOUNDARY LAYERS BASED ON CASES-99 Zbigniew Sorbjan Marquette University, Milwaukee Zbigniew Sorbjan Marquette University,
Direct numerical simulation study of a turbulent stably stratified air flow above the wavy water surface. O. A. Druzhinin, Y. I. Troitskaya Institute of.
What limits the utility of long-term eddy flux measurements? Some suggestions based on observations made within and just above several forests. David Fitzjarrald.
Amauri Pereira de Oliveira Group of Micrometeorology Summer School Rio de Janeiro March PBL PROPERTIES.
Lecture 7-8: Energy balance and temperature (Ch 3) the diurnal cycle in net radiation, temperature and stratification the friction layer local microclimates.
Atmospheric Analysis Lecture 3.
The impact of boundary layer dynamics on mixing of pollutants Janet F.Barlow 1, Tyrone Dunbar 1, Eiko Nemitz 2, Curtis Wood 1, Martin Gallagher 3, Fay.
Chuixiang (Tree) Yi School of Earth and Environmental Sciences Queens College, City University of New York.
Comparison of Eddy Covariance Results By Wendy Couch, Rob Aves and Larissa Reames.
A Basic Introduction to Boundary Layer Meteorology Luke Simmons.
Boundary Layer Meteorology
Hans Burchard Leibniz Institute for Baltic Sea Research Warnemünde Coastal Ocean Dynamics First course: Hydrodynamics.
Reducing uncertainty in NEE estimates from flux measurements D. Hollinger, L. Mahrt, J. Sun, and G.G. Katul Ameriflux Meeting, Boulder CO., October 20,
© University of Reading 2007www.reading.ac.uk RMetS Student Conference, Manchester September 2008 Boundary layer ventilation by mid-latitude cyclones Victoria.
The Air-Sea Momentum Exchange R.W. Stewart; 1973 Dahai Jeong - AMP.
An Assimilating Tidal Model for the Bering Sea Mike Foreman, Josef Cherniawsky, Patrick Cummins Institute of Ocean Sciences, Sidney BC, Canada Outline:
T Jing M. Chen 1, Baozhang Chen 1, Gang Mo 1, and Doug Worthy 2 1 Department of Geography, University of Toronto, 100 St. George Street, Toronto, Ontario,
About the advantages of vertically adaptive coordinates in numerical models of stratified shelf seas Hans Burchard 1, Ulf Gräwe 1, Richard Hofmeister 2,
CEIP annual meeting, Poznan, Poland, Oct 2007 ADVEX, the CarboEurope-IP advection activities: past, present and future C. Feigenwinter 1,7, M. Aubinet.
Observations and Models of Boundary-Layer Processes Over Complex Terrain What is the planetary boundary layer (PBL)? What are the effects of irregular.
Eva van Gorsel1, Ray Leuning1, Helen A
CO 2 Diurnal Profiling Using Simulated Multispectral Geostationary Measurements Vijay Natraj, Damien Lafont, John Worden, Annmarie Eldering Jet Propulsion.
Richard Rotunno NCAR *Based on:
Southern Ocean Surface Measurements and the Upper Ocean Heat Balance Janet Sprintall Sarah Gille Shenfu Dong Scripps Institution of Oceanography, UCSD.
Open Science Conference on the GHG Cycle in the Northern Hemisphere, Sissi-Lassithi, Crete, November 2006 ADVEX, the CarboEurope-IP advection campaigns:
The Role of Virtual Tall Towers in the Carbon Dioxide Observation Network Martha Butler The Pennsylvania State University ChEAS Meeting June 5-6, 2006.
Toward a mesoscale flux inversion in the 2005 CarboEurope Regional Experiment T.Lauvaux, C. Sarrat, F. Chevallier, P. Ciais, M. Uliasz, A. S. Denning,
Errors and uncertainty: instrumental noise: only present in first term of auto-covariance function → error propagation random error: ~ 1 / √ # independent.
Laboratory and Field Measurements of Environmental Stratified Flows Marko Princevac July 28, 2006 Stellar Hydro Days, July, 2006 Los Alamos.
What makes an ocean model coastal ?
1) What is the variability in eddy currents and the resulting impact on global climate and weather? Resolving meso-scale and sub- meso-scale ocean dynamics.
NEW TRANSFER FUNCTIONS FOR CORRECTING EDDY COVARIANCE FLUXES OF WATER VAPOUR Unit of Biosystem Physics – Gembloux Agricultural University – Belgium A.
Further steps towards a scale separated turbulence scheme: Matthias Raschendorfer DWD Aim: General valid (consistent) description of sub grid scale (SGS)
Airborne Studies of Atmospheric Dynamics
1 Large Eddy Simulation of Stable Boundary Layers with a prognostic subgrid TKE equation 8 th Annual Meeting of the EMS, Amsterdam, 2008 Stephan R. de.
Barry Baker 1, Rick Saylor 1, Pius Lee 2 1 National Oceanic and Atmospheric Administration Air Resources Laboratory Atmospheric Turbulence and Diffusion.
Experience of Modelling Forested Complex Terrain Peter Stuart, Ian Hunter & Nicola Atkinson 30 th October 2009.
Turbulence Spectra and Cospectra Measured during Fire Front Passage Daisuke Seto, Craig B. Clements, and Fred Snively Department of Meteorology and Climate.
CarboEurope: The Big Research Lines Annette Freibauer Ivan Janssens.
1 Development of a Regional Coupled Ocean-Atmosphere Model Hyodae Seo, Arthur J. Miller, John O. Roads, and Masao Kanamitsu Scripps Institution of Oceanography.
Page 1© Crown copyright Modelling the stable boundary layer and the role of land surface heterogeneity Anne McCabe, Bob Beare, Andy Brown EMS 2005.
Gap Filling Comparison Workshop, September 18-20, 2006, Jena, Germany Corinna Rebmann Olaf Kolle Max-Planck-Institute for Biogeochemistry Jena, Germany.
Top Down Emission Analyses Theme 17 th GEIA Conference Nov. 19, 2015 Alex Guenther Department of Earth System Science University of California, Irvine.
CEIP annual meeting, Poznan, Poland, Oct 2007 ADVEX, the CarboEurope-IP advection campaigns: Overview paper, Norunda nights C. Feigenwinter 1,7 and.
ATS/ESS 452: Synoptic Meteorology Friday 08 January 2016 Review Material Overview of Maps Equations of Motion Advection Continuity.
Tropical Atlantic SST in coupled models; sensitivity to vertical mixing Wilco Hazeleger Rein Haarsma KNMI Oceanographic Research The Netherlands.
Simulation of atmospheric CO 2 variability with the mesoscale model TerrSysMP Markus Übel and Andreas Bott University of Bonn Transregional Collaborative.
ATS/ESS 452: Synoptic Meteorology Wednesday 09/10/2014 Quiz! (Short?) Weather Discussion Continue Review Material Geostrophic Wind Continuity Vorticity.
Transport Working Group
Performance of a new urban land-surface scheme in an operational mesoscale model for flow and dispersion Ashok Luhar, Marcus Thatcher, Peter Hurley Centre.
OCEAN RESPONSE TO AIR-SEA FLUXES Oceanic and atmospheric mixed
CarboEurope Open Science Conference
GIJS DE BOER(1), GREGORY J. TRIPOLI(1), EDWIN W. ELORANTA(2)
Baroclinic and barotropic annular modes
Directions of Inquiry Given a fixed atmospheric CO2 concentration assimilation scheme, what is the optimal network expansion? Given the wide array of available.
Dynamics of Annular Modes
Large-eddy simulation of an observed evening transition boundary layer
Low Order Methods for Simulation of Turbulence in Complex Geometries
Basic concepts of heat transfer: Heat Conduction
Baltic Sea Research Institute Warnemünde, Germany
Dynamics of Annular Modes
Presentation transcript:

Eddy Covariance Flux Measurements in Nocturnal conditions Marc Aubinet Aubinet, Ecol. Appl., in prep. Open Science Conference. The GHG Cycle in the Northern Atmosphere

Content Quantitative vs qualitative approach Drainage flows Intermittent turbulence Representativeness in well developed turbulence Conclusions

The problems that challenge night eddy covariance measurements (Massman and Lee, 2002) High frequencies not captured Insufficient resolution for small scale turbulence Too small averaging times Advection is significant at the sites Measurement system decoupled from surface Footprint problems Similarity relations not valid Stationarity criteria not filled

Qualitative approach: Description of the processes at work in the stable boundary layer Turbulent ramps (TR) (Cava et al.,2004) Small scale turbulence (SST) (Mahrt and Vickers, 2005) Gravity waves (GW) (Cava et al., 2004) Drainage flows (DF) (Aubinet et al., 2003) Land breezes (LB) (Sun et al., 1998) Intermittent turbulence (IT) (Coulter and Doran,2002)

TRSSGWDFLBIT High frequencies Resolution Similarity Advection Decoupling Footprint Averaging time Non stationarity  : No problem ! : Not critical problem !!! : Critical problem TR : Turbulent ramps SS : Small scale turbulence GW : Gravity waves DF : Drainage flow LB : Land breeze IT : Intermittent turbulence

TRSSGWDFLBIT High frequencies  Resolution  Similarity  Advection  Decoupling  Footprint!!! Averaging time  Non stationarity   : No problem ! : Not critical problem !!! : Critical problem TR : Turbulent ramps SS : Small scale turbulence GW : Gravity waves DF : Drainage flow LB : Land breeze IT : Intermittent turbulence

TRSSGWDFLBIT High frequencies  ! Resolution  ! Similarity  Advection  Decoupling  Footprint!!! Averaging time  ! Non stationarity   : No problem ! : Not critical problem !!! : Critical problem TR : Turbulent ramps SS : Small scale turbulence GW : Gravity waves DF : Drainage flow LB : Land breeze IT : Intermittent turbulence

TRSSGWDFLBIT High frequencies  ! Resolution  ! Similarity  ! Advection  Decoupling  Footprint!!! Averaging time  !! Non stationarity  !  : No problem ! : Not critical problem !!! : Critical problem TR : Turbulent ramps SS : Small scale turbulence GW : Gravity waves DF : Drainage flow LB : Land breeze IT : Intermittent turbulence

TRSSGWDFLBIT High frequencies  !  Resolution  !  Similarity  ! Advection  !!! Decoupling  !!! Footprint!!! Averaging time  !!  Non stationarity  !   : No problem ! : Not critical problem !!! : Critical problem TR : Turbulent ramps SS : Small scale turbulence GW : Gravity waves DF : Drainage flow LB : Land breeze IT : Intermittent turbulence

TRSSGWDFLBIT High frequencies  !  Resolution  !  Similarity  ! Advection  !!! Decoupling  !!! Footprint!!! Averaging time  !!  Non stationarity  !   : No problem ! : Not critical problem !!! : Critical problem TR : Turbulent ramps SS : Small scale turbulence GW : Gravity waves DF : Drainage flow LB : Land breeze IT : Intermittent turbulence

TRSSGWDFLBIT High frequencies  !  Resolution  !  Similarity  !! Advection  !!! Decoupling  !!! Footprint!!! Averaging time  !!  !!! Non stationarity  !  !!!  : No problem ! : Not critical problem !!! : Critical problem TR : Turbulent ramps SS : Small scale turbulence GW : Gravity waves DF : Drainage flow LB : Land breeze IT : Intermittent turbulence

Content Introduction Quantitative vs qualitative approach Drainage flows Intermittent turbulence Representativeness in well developed turbulence Conclusions

Drainage flows / Land breezes Very common (slope < 1%) Apparition of sublayers (→ decoupling) Induce advection Different patterns according to topography and land cover

Drainage flow typology Momentum equation (i.e. Staebler and Fitzjarrald, 2005) : Implication for mass flow in stationary conditions:

Drainage flow typology

VA > 0VA = 0VA < 0 VA > 0VA = 0VA < 0 VA > 0VA = 0VA < 0

Drainage flow typology VA > 0VA = 0 HA > 0 VA < 0 VA > 0VA = 0 HA > 0 VA < 0 VA > 0VA = 0 HA > 0 VA < 0

Drainage flow typology VA > 0VA = 0 HA > 0 VA < 0 HA > 0 │HA │ > │VA │ VA > 0VA = 0 HA > 0 VA < 0 HA > 0 │HA │ > │VA │ VA > 0VA = 0 HA > 0 VA < 0 HA > 0 │HA │ > │VA │

Drainage flow typology Simple CO2 budget model (Aubinet et al., 2005): –2 Dimensions –Transport only due to advection –Mass conservation + tracer –Negative vertical [CO 2 ] gradients Conclusion of the model –In convergence flows, horizontal advection sign depends on source heterogeneities.

Drainage flow typology VA > 0VA = 0 HA > 0 VA < 0 HA > 0 │HA │ > │VA │ VA > 0 HA = 0 VA = 0 HA > 0 VA < 0 HA > 0 │HA │ > │VA │ VA > 0VA = 0 HA > 0 VA < 0 HA > 0 │HA │ > │VA │

Drainage flow typology VA > 0VA = 0 HA > 0 VA < 0 HA > 0 │HA │ > │VA │ VA > 0 HA = 0 VA = 0 HA > 0 VA < 0 HA > 0 │HA │ > │VA │ VA > 0 HA > 0 VA = 0 HA > 0 VA < 0 HA > 0 │HA │ > │VA │

Drainage flow typology VA > 0 HA < 0 │HA │ < │VA │ VA = 0 HA > 0 VA < 0 HA > 0 │HA │ > │VA │ VA > 0 HA = 0 VA = 0 HA > 0 VA < 0 HA > 0 │HA │ > │VA │ VA > 0 HA > 0 VA = 0 HA > 0 VA < 0 HA > 0 │HA │ > │VA │ Vielsalm (Aubinet, 2003) Tharandt ? (Feigenwinter, 2004)

Tharandt Vielsalm Feigenwinter et al., BLM, 2004 Aubinet et al., BLM, 2003 Impact on CO2 balance not clear (net advection < uncertainty)

Drainage flow typology VA > 0 HA < 0 │HA │ < │VA │ VA = 0 HA > 0 VA < 0 HA > 0 │HA │ > │VA │ VA > 0 HA = 0 VA = 0 HA > 0 VA < 0 HA > 0 │HA │ > │VA │ VA > 0 HA > 0 VA = 0 HA > 0 VA < 0 HA > 0 │HA │ > │VA │ Vielsalm (Aubinet, 2003) Tharandt ? (Feigenwinter, 2004) Browns River ? Prince Albert ? (Lee, 1998) Hyytialla

Hyytialla (Vesala poster, this session)

Drainage flow typology VA > 0 HA < 0 │HA │ < │VA │ VA = 0 HA > 0 VA < 0 HA > 0 │HA │ > │VA │ VA > 0 HA = 0 VA = 0 HA > 0 VA < 0 HA > 0 │HA │ > │VA │ VA > 0 HA > 0 VA = 0 HA > 0 VA < 0 HA > 0 │HA │ > │VA │ Vielsalm (Aubinet, 2003) Tharandt ? (Feigenwinter, 2004) Renon ? (Marcolla, 2005) Browns River ? Prince Albert ? (Lee, 1998) Hyytialla

Renon (Marcolla et al., AFM, 2005)

Drainage flow typology VA > 0 HA < 0 │HA │ < │VA │ VA = 0 HA > 0 VA < 0 HA > 0 │HA │ > │VA │ VA > 0 HA = 0 VA = 0 HA > 0 VA < 0 HA > 0 │HA │ > │VA │ VA > 0 HA > 0 VA = 0 HA > 0 VA < 0 HA > 0 │HA │ > │VA │ Vielsalm (Aubinet, 2003) Tharandt (Feigenwinter, 2004) Renon ? (Marcolla, 2005) Browns River ? Prince Albert ? (Lee, 1998) Hyytialla Niwot Ridge ? (Turnipseed, 2003)

Niwot Ridge (Turnipseed et al., 2003)

Drainage flow typology VA > 0 HA < 0 │HA │ < │VA │ VA = 0 HA > 0 VA < 0 HA > 0 │HA │ > │VA │ VA > 0 HA = 0 VA = 0 HA > 0 VA < 0 HA > 0 │HA │ > │VA │ VA > 0 HA > 0 VA = 0 HA > 0 VA < 0 HA > 0 │HA │ > │VA │ Vielsalm (Aubinet, 2003) Tharandt (Feigenwinter, 2004) Renon ? (Marcolla, 2005) Browns River ? Prince Albert ? (Lee, 1998) Hyytialla Hesse (Aubinet 2005) Wetzstein (Feigenwinter talk) Niwot Ridge ? (Turnipseed, 2003)

Hesse (Aubinet et al., 2005)

Norunda !!! (Feigenwinter, this session)

Drainage flow typology VA > 0 HA < 0 │HA │ < │VA │ VA = 0 HA > 0 VA < 0 HA > 0 │HA │ > │VA │ VA > 0 HA = 0 VA = 0 HA > 0 VA < 0 HA > 0 │HA │ > │VA │ VA > 0 HA > 0 VA = 0 HA > 0 VA < 0 HA > 0 │HA │ > │VA │ Vielsalm (Aubinet, 2003) Tharandt ? (Feigenwinter, 2004) Renon ? (Marcolla, 2005) Browns River ? Prince Albert ? (Lee, 1998) Hyytialla (Vesala poster) Hesse (Aubinet 2005) Wetzstein Niwot Ridge ? (Turnipseed, 2003) Harvard ? Staebler and Fitzjarrald (2003) Morgan Monroe? Froelich (2005) Norunda

Plan Introduction Quantitative vs qualitative approach Drainage flows Intermittent turbulence Representativeness in well developed turbulence Conclusions

TRSSGWDFLBIT High frequencies  !  Resolution  !  Similarity  !! Advection  !!! Decoupling  !!! Footprint!!! Averaging time  !!  !!! Non stationarity  !  !!!  : No problem ! : Not critical problem !!! : Critical problem TR : Turbulent ramps SS : Small scale turbulence GW : Gravity waves DF : Drainage flow LB : Land breeze IT : Intermittent turbulence

Intermittent turbulence Multiple causes: –Low level jet –Density currents –Kelvin Helmholtz waves –Advection Produces strong turbulence during limited period Stationarity conditions not filled

Intermittent turbulence Destroys flow pattern that establishes during calm periods (drainage flow, land breeze) Removes CO2 stored during calm periods Impact on the measurements: –The flux is the most important during IT periods (50% of the flux during 20% of the time – Coulter and Doran, 2002) –The processes are non stationary (skipped by quality control tests) –Turbulent transport only?

Intermittent turbulence Are we able to measure fluxes correctly during intermittent turbulence ? What is the representativeness of these fluxes ?

Case study : Neustift (Wohlfhart et al., AFM, 2005)

Plan Introduction Quantitative vs qualitative approach Drainage flows Intermittent turbulence Representativeness in well developed turbulence Conclusions

TRSSGWDFLBIT High frequencies  !  Resolution  !  Similarity  !! Advection  !!! Decoupling  !!! Footprint!!! Averaging time  !!  !!! Non stationarity  !  !!!  : No problem ! : Not critical problem !!! : Critical problem TR : Turbulent ramps SS : Small scale turbulence GW : Gravity waves DF : Drainage flow LB : Land breeze IT : Intermittent turbulence

Chequamegon-Nicolet National Forest (Northern Wisconsin) (Cook et al., 2004)

Wetzstein site Kolle (pers. Comm.)

Conclusions Night flux error results from several different processes. Main processes are advection and intermittent turbulence. If site is affected by advection, the u* correction remains the best way to correct the fluxes. If site is affected by intermittent turbulence, stationary criterion is needed. These processes should be identified at the sites in order to allow implementing an adapted night flux correction at each site.

Thank you !